Helpful Hints

This test contains several tricky integrals. Here are some techniques that may be helpful in solving them.

- Improper integrals: Treat $\int_a^{\infty} f(x) dx$ as $\lim_{c \to \infty} \int_a^c f(x) dx$. If f(x) is discontinuous at x = b, treat $\int_a^b f(x) dx$ as $\lim_{c \to b} \int_a^c f(x) dx$.
- Integration by parts: $\int_a^b u(x) \frac{dv}{dx} dx = [u(x)v(x)]_a^b \int_a^b v(x) \frac{du}{dx} dx$.
- **Trigonometric substitution:** Letting $x = \sin(\theta)$, $\sec(\theta)$, or $\tan(\theta)$ can be helpful with expressions such as $x^2 \pm a^2$ or $a^2 x^2$.
- The so-called Weierstrass substitution: For hard trigonometric integrals, letting $t = \tan\left(\frac{x}{2}\right)$ so that $\sin(x) = \frac{2t}{1+t^2}$, $\cos(x) = \frac{1-t^2}{1+t^2}$, and $dx = \frac{2}{1+t^2}dt$, can be helpful.
- Feynman's **Differentiation under the integral sign:** Under the right circumstances, if $I(y) = \int f(x, y) dx$, then differentiating so that $I'(y) = \int \frac{d}{dy} [f(x, y)] dx$ can make an unsolvable integral solvable.
- Unnamed trick #1: $\int \left(e^x f(x) + e^x f'(x) \right) dx = \int \frac{d}{dx} \left(e^x f(x) \right) dx = e^x f(x) + c.$

• Unnamed trick #2:
$$\int_0^a f(x) dx = \int_0^a f(a-x) dx$$

For all questions, NOTA means None Of These Answers.

(1)
$$\int_{0}^{1} e^{2} dx =$$

(a) $\frac{1}{3}$ (b) $e^{2} - 1$
(c) e^{2} (d) $\frac{1}{2}$ (e) NOTA
(2) $\int_{0}^{1} (2x^{3} - x + 1) dx =$
(a) 1 (b) -1
(c) 2 (d) $\frac{3}{2}$ (e) NOTA
(3) $\int_{0}^{\frac{\pi}{2}} \cos(3x) dx =$
(a) $\frac{1}{3}$ (b) $-\frac{1}{3}$
(c) 1 (d) -1 (e) NOTA

(4)	$\int_{-1}^{1} x dx =$								
	(a)	0	(b)	$\frac{1}{2}$					
	(c)	1	(d)	2	(e)	NOTA			
(5)	$\int_{1}^{5} \frac{1}{x-2}$	dx =							
	(a)	ln(3)	(b)	ln(2)					
	(c)	0	(d)	<u>8</u> 9	(e)	ΝΟΤΑ			
(6)	$\int_0^{\sqrt{\ln(2)}}$	$xe^{x^2}dx =$							
	(a)	1	(b)	<i>e</i> – 1					
	(c)	$\frac{1}{2}(e-1)$	(d)	$\frac{1}{2}$	(e)	ΝΟΤΑ			
(7)	$\int_0^1 \frac{x}{x^2 - x}$	$\frac{-1}{2x-3}dx =$							
	(a)	$\ln\left(\frac{2\sqrt{3}}{3}\right)$		(b) ln(2√	3)				
	()	$\ln\left(\frac{\sqrt{3}}{2}\right)$		(d) $\ln\left(\frac{4}{3}\right)$		(e) NOTA			
	(C)	$\operatorname{III}\left(\frac{1}{2}\right)$		(3)		(0) 10017			
(8)		$\lim_{x \to 3} \left(\frac{1}{2x-3} dx \right) =$		(4) (3)		(0)			
(8)	$\int_0^1 \frac{1}{x^2 - x^2}$	(2)	(b)	$\frac{\ln(3)}{4} - 1$		(c)			
(8)	$\int_0^1 \frac{1}{x^2 - x^2}$	$\frac{1}{2x-3}dx =$	(b) (d)		(e)				
	$\int_{0}^{1} \frac{1}{x^{2}-x$	$\frac{1}{2x-3}dx = \frac{\ln(\sqrt{3})}{2}$		$\frac{\ln(3)}{4} - 1$					
	$\int_{0}^{1} \frac{1}{x^{2}-x$	$\frac{1}{2x-3}dx =$ $\frac{\ln(\sqrt{3})}{2}$ $-\frac{\ln(3)}{4}$		$\frac{\ln(3)}{4} - 1$ $\frac{\ln(3)}{4}$					
	$\int_{0}^{1} \frac{1}{x^{2}-x$	$\frac{1}{2x-3}dx =$ $\frac{\ln(\sqrt{3})}{2}$ $-\frac{\ln(3)}{4}$ $\frac{1}{+2x+5}dx =$ $\frac{\pi}{8}$	(d)	$\frac{\ln(3)}{4} - 1$ $\frac{\ln(3)}{4}$					
(9)	$\int_{0}^{1} \frac{1}{x^{2}-x$	$\frac{1}{2x-3}dx =$ $\frac{\ln(\sqrt{3})}{2}$ $-\frac{\ln(3)}{4}$ $\frac{1}{+2x+5}dx =$ $\frac{\pi}{8}$	(d) (b)	$\frac{\ln(3)}{4} - 1$ $\frac{\ln(3)}{4}$ $\frac{\pi}{4}$	(e)	NOTA			
(9)	$\int_{0}^{1} \frac{1}{x^{2}-x$	$\frac{1}{2x-3}dx =$ $\frac{\ln(\sqrt{3})}{2}$ $-\frac{\ln(3)}{4}$ $\frac{1}{+2x+5}dx =$ $\frac{\pi}{8}$ $\frac{\pi}{2}$ $\overline{-\sqrt{x}}dx =$	(d) (b)	$\frac{\ln(3)}{4} - 1$ $\frac{\ln(3)}{4}$ $\frac{\pi}{4}$	(e)	NOTA			
(9)	$\int_{0}^{1} \frac{1}{x^{2}-x$	$\frac{1}{2x-3}dx =$ $\frac{\ln(\sqrt{3})}{2}$ $-\frac{\ln(3)}{4}$ $\frac{1}{+2x+5}dx =$ $\frac{\pi}{8}$ $\frac{\pi}{2}$ $\overline{-\sqrt{x}}dx =$ $\frac{1}{3}$	(d) (b) (d)	$\frac{\ln(3)}{4} - 1$ $\frac{\ln(3)}{4}$ $\frac{\pi}{4}$ $\frac{3\pi}{4}$	(e)	NOTA			

$$\begin{array}{rcl} (11) & \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \sin\left(\frac{x-x^2}{2}\right) \cos\left(\frac{x+x^2}{2}\right) dx = \\ & (a) & \frac{\pi^4}{256} & (b) & \frac{\pi^2}{16} \\ & (c) & \frac{\pi}{8} & (d) & 0 & (e) & \text{NOTA} \end{array} \\ \hline \\ (12) & \int_{0}^{\frac{\pi}{2}} \sec(x) dx = \\ & (a) & \ln(4 - \sqrt{2} + \sqrt{6}) - \ln(\sqrt{2} + \sqrt{6}) & (b) & \ln(4 + \sqrt{2} + \sqrt{6}) - \ln(\sqrt{2} - \sqrt{6}) \\ & (c) & \ln(4 - \sqrt{2} + \sqrt{6}) - \ln(\sqrt{6} - \sqrt{2}) & (d) & \ln(4 + \sqrt{2} + \sqrt{6}) - \ln(\sqrt{6} - \sqrt{2}) \\ & (e) & \text{NOTA} \end{array} \\ \hline \\ (13) & \int_{0}^{2} \sqrt{x + \sqrt{x + \sqrt{x + \cdots}}} dx = \\ & (a) & \frac{5}{6} & (b) & \frac{12}{6} \\ & (c) & \frac{19}{6} & (d) & -\frac{7}{6} & (e) & \text{NOTA} \end{array} \\ \hline \\ (14) & \int_{0}^{1} x^2 e^{2x} dx = \\ & (a) & \frac{e^2 - 1}{2} & (b) & e^2 - 1 \\ & (c) & \frac{e^2 - 1}{4} & (d) & \frac{a^2}{4} - 1 & (e) & \text{NOTA} \end{array} \\ \hline \\ (15) & \text{Find } \int_{0}^{\infty} e^{-\alpha x} \sin(x) dx \text{ for real } \alpha > 0. \\ & (a) & -\frac{1}{a^2 + 1} & (b) & \frac{1}{a^2 + 1} & (e) & \text{NOTA} \end{array} \\ \hline \\ (16) & \int_{0}^{2} \sqrt{4 - x^2} dx = \\ & (a) & 4\pi & (b) & 2\pi \\ & (c) & \pi & (d) & \frac{\pi}{2} & (e) & \text{NOTA} \end{array}$$

(17)	$\int_{1}^{\sqrt{2}} \frac{\sqrt{x}}{x}$	$\frac{x^{2-1}}{x}dx =$								
	(a)	$\frac{\sqrt{2}}{2}$	(b)	$1 - \frac{\pi}{4}$						
	(c)	$1 + \pi$	(d)	$\frac{\pi}{2}$		(e)	ΝΟΤΑ			
(18)	$\int_{1}^{\ln(2)} \ln\left(x^{e^{x}} \cdot e^{\left(\frac{e^{x}}{x}\right)}\right) dx =$									
	(a)	2	(b)	2 ln(<i>lı</i>	ı(2))					
	(c)	ln(4)	(d)	$e^{2}\ln(2)$		(e)	ΝΟΤΑ			
(19)	$\int_0^{\pi} \frac{1}{3+c}$	$\frac{1}{\cos(x)}dx =$								
	(a)	$\frac{\sqrt{2}}{4}\pi$	(b)	$\frac{\sqrt{3}}{3}\pi$						
	(c)	$\frac{\sqrt{2}}{2}\pi$	(d)	$\frac{\sqrt{3}}{2}\pi$		(e)	ΝΟΤΑ			
(20)	$\int_0^1 \frac{1}{1 + (1)}$	$\frac{1}{\left(1-\frac{1}{x}\right)^{2015}}dx =$								
	(a)	2015		(b)	$\frac{1}{2}$					
	(c)	arctan(2015)		(d)	$\frac{1}{2015}$		(e)	NOTA		
(21)	Solve for $a: \int_{1}^{a} \frac{6}{x^4} dx = 1$									
	(a)	2	(b)	3√2						
	(c)	1.5	(d)	$\sqrt{2}$		(e)	ΝΟΤΑ			
(22)	$\lim_{n\to\infty}$	$\sum_{k=1}^{n} \frac{n}{(n+k)^2} =$								
	(a)	∞	(b)	$e-\frac{1}{2}$						
	(c)	<u>1</u> 2	(d)	$-\frac{1}{2}$		(e)	ΝΟΤΑ			

For Problems (23) to (26), let R be the region bounded by the functions f(x) = -x(x - 3) and g(x) = x.

(23) Find the area of region R.
(a)
$$\frac{4}{3}$$
 (b) $-\frac{4}{3}$
(c) $\frac{8}{3}$ (d) $-\frac{8}{3}$ (e) NOTA
(24) Find the volume when region R is rotated about the x-axis.
(a) $\frac{61}{15}\pi$ (b) $\frac{46}{15}\pi$
(c) $\frac{71}{15}\pi$ (d) $\frac{56}{15}\pi$ (e) NOTA
(25) Find the volume when region R is rotated about the y-axis.
(a) $\frac{4}{3}\pi$ (b) $\frac{16}{15}\pi$
(c) $\frac{8}{3}\pi$ (d) $\frac{32}{15}\pi$ (e) NOTA
(25) Find the volume when region R is rotated about the y-axis.
(a) $\frac{4}{3}\pi$ (b) $\frac{16}{15}\pi$
(c) $\frac{8}{3}\pi$ (d) $\frac{32}{15}\pi$ (e) NOTA
(26) Assuming a density of one, the centroid of region R is
 $\left(\frac{\int_{0}^{2}x(f(x)-g(x))dx}{\int_{0}^{2}(f(x)-g(x))dx}\right)(f(x)-g(x))dx}\right)$. Find this point.
(a) $\left(\frac{7}{5},1\right)$ (b) $\left(1,\frac{7}{5}\right)$
(c) $\left(\frac{5}{7},1\right)$ (d) $\left(1,\frac{5}{7}\right)$ (e) NOTA
(27) If, for continuous $f(x)$, $\int_{a}^{d}f(x)dx = 10$, $\int_{a}^{c}f(x)dx = 7$, and $\int_{b}^{d}f(x)dx = 8$, find $\int_{b}^{c}f(x)dx$
(a) 5 (b) -5
(c) 7 (d) -7 (e) NOTA

(28) Find the slope of the tangent line to
$$f(x) = \int_x^{x^2} e^{t^3} dt$$
 at $x = \sqrt{e}$.

- (a) $e^e (2e^{e^2+0.5}-1)$ (b) $2e^{e^3-e+0.5}$
- (c) $2e^{e^3+0.5}$ (d) $2e^{e^3+0.5}-e^e$ (e) NOTA

(29) Approximate the area between $f(x) = \sin(x)$ and the x-axis from x = 0 to $x = \pi$ via Left-Handed Riemann Sum using six equal-width rectangles.

(a)
$$\frac{(1+\sqrt{3})}{6}\pi$$
 (b) $(1+\sqrt{3})$

(c)
$$\frac{(2+\sqrt{3})}{6}\pi$$
 (d) $(2+\sqrt{3})$ (e) NOTA

- (30) Francisco and Ryan are the last two competitors in an Integration Bee, during which they must answer increasingly difficult integrals. Because they are both Calculus Masters^M, there are infinitely many integrals on the test. For the n^{th} integral, the probability of Francisco getting it wrong is $\int_0^1 x^{n^2-1} dx$, and the probability of Ryan getting it wrong is $\int_1^2 \log_{n+1}(\sqrt[n]{x}) dx$. Who is expected to get fewer integrals wrong, and therefore win?
 - (a) Ryan (b) Francisco
 - (c) They Tie (d) Cannot Be Determined (e) NOTA