2015 National Convention

You have 60 minutes to complete this 30-question test. Do not get bogged down by any one question; some are significantly more difficult than the others. The answer choice E. NOTA denotes that "None of These Answers" is correct. Good luck!

For each of the following functions in **questions 1-3**, classify the behavior at the point (x,y) = (0,0). Choose from one of the following: NOT (not a critical point), MAX (local maximum), MIN (local minimum), SAD (saddle point), and NOTA (none of the other answers).

1. $f(x, y) = x + x^2 + y^2$ A) NOT B) MAX C) MIN D) SAD E) NOTA 2. $f(x, y) = x^3 + 2x^2y^2 + y^3$ A) NOT B) MAX C) MIN D) SAD E) NOTA 3. $f(x, y) = x^2 + 2xy + y^2$ A) NOT B) MAX D) SAD C) MIN E) NOTA 4. Compute the integral: $\int_0^{\pi/2} \int_x^{\pi/2} \frac{\sin y}{y} \, dy \, dx.$ **B**) 1 C) $\frac{1}{2}$ A) -1 D) $-\frac{1}{2}$ E) NOTA

For **questions 5 and 6**, consider the following points in \mathbb{R}^3 . A = (0, -1, 2) , B = (1, -1, 1) , C = (5, 2, 0) , D = (-1, 4, -1) .

5. Find an equation for the plane through A, B and C. When written in the form x + ay + bz = c, what is the value of a + b + c?
A) -1
B) 1
C) 3
D) 5
E) NOTA

6. Find an equation for the line which goes through D and intersects the plane in #5 orthogonally.A) s(t) = (t-1, 4-t, t-1)B) s(t) = (t-1, 4+t, t+1)D) s(t) = (t+1, t+4, t+1)E) NOTA

7. Which of the following equalities is neither derived from nor is a form of Green's Theorem? A) $\int_C Pdx + Qdy = \int_D \left(\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y}\right) dxdy$ B) $\int_{\partial D} \mathbf{F} \cdot d\mathbf{s} = \int_D (\operatorname{curl} \mathbf{F}) \cdot \mathbf{k} dA$ C) $\int_{\partial D} \mathbf{F} \cdot \mathbf{n} ds = \int_D \operatorname{div} \mathbf{F} dA$ D) Area $= \frac{1}{2} \int_{\partial D} x dy - y dx$ E) NOTA

For **questions 8-10**, consider the parameterized curve in R³ given by $\vec{r}(t) = \left(\frac{t^3}{3} - t, t^2 - 1, 0\right)$

for $-2 \le t \le 2$.

8. Find the acceleration of a particle moving along the curve at time t = 1. B) (2, 2, 0) A) (0, 2, 0) C) (2, 0, 0) D) (2, 2, 2) E) NOTA 9. Find the speed of a particle moving along the curve at time t = 2. A) -5 B) 2 C) 3 D) 4 E) NOTA 10. Find the arc length of the curve for $-2 \le t \le 2$. B) 14/3 C) 20/3 A) 5 D) 28/3 E) NOTA

For questions 11 and 12, determine the value of the following limits, if they exist.

11.
$$\lim_{(x,y)\to(0,0)} \frac{x^3 y^3}{x^4 + y^2}$$
.
A) DNE B) -1 C) 0 D) 1 E) NOTA

12.
$$\lim_{(x,y)\to(0,0)} \frac{x^{-y}}{x^{4}+y^{2}}$$
.
A) DNE B) -1 C) 0 D) 1 E) NOTA

13. Let **F** be a vector field continuous on the C¹ path $\boldsymbol{\sigma}$: $[a_1, b_1] \rightarrow \mathbb{R}^3$. Let $\boldsymbol{\rho}$: $[a, b] \rightarrow \mathbb{R}^3$ be a reparametrization of $\boldsymbol{\sigma}$. If $\boldsymbol{\rho}$ is orientation-reversing, and the value of $\int_{\boldsymbol{\sigma}} \boldsymbol{F} \cdot d\boldsymbol{s} = 13$,

what is the value of
$$\int_{\rho} F \cdot ds$$
 ?

 A) 13
 B) -13
 C) 13/2
 D) -13/2
 E) NOTA

14. Suppose $f(x, y) = 24 \sin x \cot y + e^{2x} - y$. Let $A = f_{xy}$ and $B = f_{yx}$. Now calculate the value of A - B. A) $24 \cos x \sin y$ B) $e^{2x} - 1$ C) 12 D) $24\sin x - 24\cot y$ E) NOTA

15. Consider a solid torus obtained as follows: Take the unit disc centered at (3, 0, 0) and lying entirely in the xz-plane; then rotate that disc around the z-axis. Compute the volume of the resulting torus. A) $4\pi^2$ B) $6\pi^2$ C) $8\pi^2$ D) $10\pi^2$ E) NOTA

16. Whose theorem says that the order of integration can be switched without changing the final value of a double integral?

Namely:
$$\int_{A} \left(\int_{B} f(x, y) \, dy \right) \, dx = \int_{B} \left(\int_{A} f(x, y) \, dx \right) \, dy = \int_{A \times B} f(x, y) \, d(x, y),$$

A) Cauchy B) Fubini C) Gauss D) Leibniz E) NOTA

17. For a given vector field $\mathbf{F} = e^{xy}\mathbf{i} + e^{x+y}\mathbf{j}$, calculate the curl at the point (x,y) = (0,1). Is this a gradient vector field? A) 1- e; yes B) 0; yes C) 1+ e; no D) e; no E) NOTA

For **questions 18-20**, let S be the level surface of $F(x, y, z) = x \sin y + y \sin z = 0$.

18. Find the tangent plane to the surface S at $(1, \pi, 0)$. A) $x + \pi y = 0$ B) $x + y + z = 1 + \pi$ C) $y - \pi z = \pi$ D) $y + \pi z = 0$ E) NOTA

19. Which theorem would be used to show that, near the point $(1, \pi, 0)$, the level surface S is the graph of a function f(x, y)?

A) Gradient TheoremB) Godel's TheoremC) Implicit Function TheoremD) Squeeze TheoremE) NOTA

20. Find the partial derivative $\frac{\partial f}{\partial x}(1,\pi)$.C) 1D) ∞ E) NOTA

21. Compute: $\lim_{n\to\infty} (\frac{1}{n}A^n)$, where A is the 2x2 matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Your answer should be another 2x2 matrix. Find the sum of the four entries. A) 0 B) 1 C) 10 D) 100 E) NOTA 22. In the spherical coordinate system, recall that: $x = \rho \sin \varphi \cos \theta$, $y = \rho \sin \varphi \sin \theta$, $z = \rho \cos \varphi$. What is the simplified form of $\left|\frac{\partial(x,y,z)}{\partial(\rho,\theta,\varphi)}\right|$? A) $\rho^2 \sin \varphi$ B) $\rho^2 (\cos \varphi)^2 \sin \varphi$ C) $\rho \sin \theta \cos \theta$ D) $\rho^2 \sin \varphi \cos \theta$ E) NOTA

For questions 23 and 24, suppose that \vec{a} , \vec{b} , \vec{c} are vectors in R³. You are given that the following vector identity always holds:

$$\vec{a} \times (\vec{b} \times \vec{c}) = \vec{b}(\vec{a} \cdot \vec{c}) - \vec{c}(\vec{a} \cdot \vec{b})$$

You are also given that the three vectors satisfy the following conditions: $\vec{a} \times (\vec{a} \times \vec{b}) = \vec{0}, \qquad \vec{b} \cdot \vec{b} = 1, \qquad \vec{a} \cdot \vec{b} = -2, \qquad \vec{b} \cdot \vec{c} = 2$

23. Calculate the value of $\vec{a} \times \vec{b}$.A) $-\vec{4}$ B) $-\vec{2}$ C) $\vec{0}$ D) $\vec{4}$ E) NOTA

24. Calculate the value of
$$\vec{a} \cdot \vec{c}$$
.A) -4B) -2C) 0D) 4E) NOTA

25. Find the extreme points of f(x, y, z) = x + y + z subject to the conditions $x^2 + y^2 = 2$ and x + z = 1. A) (1, 0, 0); (-1, $\sqrt{2}$, 1) B) ($\sqrt{2}$, 0, 1- $\sqrt{2}$); (1, $\sqrt{2}$, 0) C) (1, 1, 0); (-1, 1, 2) D) (0, $-\sqrt{2}$, 1); (0, $\sqrt{2}$, 1) E) NOTA

26. Let $\mathbf{F}(x, y, z) = (2xyz + \sin x)\mathbf{i} + x^2 z\mathbf{j} + x^2 y\mathbf{k}$. If possible, find a function *f* such that $\mathbf{F} = \nabla f$. A) $f = x^2 yz + \cos x + C$ B) $x^2 yz - \cos x + \sin y + C$ C) xyz + CD) Impossible E) NOTA

27. Calculate the value of:

A) 11/30 B) 17/60
$$\int_{0}^{1} \int_{0}^{x} \int_{0}^{y} (y + xz) dz dy dx$$
 E) NOTA

28. Find the area of the two-dimensional region $x^2 - 2xy + 3y^2 \le 1$. Hint: Note that we can rewrite the inequality as $(x - y)^2 + 2y^2 \le 1$.

A)
$$\frac{\pi}{4}$$
 B) $\frac{\pi\sqrt{2}}{2}$ C) $\frac{\pi}{2}$ D) $\frac{\pi\sqrt{3}}{4}$ E) NOTA

29. Use Stokes' theorem to evaluate the line integral:

$$\int_{C} -y^{3}dx + x^{3}dy - z^{3}dz$$
Where *C* is the intersection of the cylinder $x^{2} + y^{2} = 1$ and the plane $x + y + z = 1$, and the orientation on *C* corresponds to counterclockwise motion in the xy-plane.
A) 0 B) $\pi/2$ C) π D) $3\pi/2$ E) NOTA

30. Use Gauss' divergence theorem to evaluate $\int_{\partial W} (x^2 + y + z) dS$, where *W* is the solid ball $x^2 + y^2 + z^2 \le 1$. A) 0 B) $2\pi/3$ C) $4\pi/3$ D) $8\pi/3$ E) NOTA