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Multivariable Calculus – Solutions 
 
1. A - ∇f does not equal (0,0); fx = 1at the point of interest.  

 
2. D - The second derivative test is inconclusive for this function. By further inspection we see that f(x, 0) 

= x
3
, which can become positive or negative as one moves away from (0,0). (0,0), therefore, cannot 

be a local max or min, but rather a saddle point.  

 
3. C – Note that the function can be written as (x+y)

2
. We know without calculus that this function cannot 

take negative values and so is minimized at (0,0).  

 
4. B – Change the order of integration to enable evaluation. Graphing the region in question will help to 

decide the new bounds. The integral becomes:    
    

 

 

 
     

   

 
. Integrate the inside first, yielding 

     
   

 
  , which equals 1.  

 

5. C –           = (1, 0, -1),          = (5, 3, -2). Take the cross product of the two vectors to find the vector normal 

to the plane.                    = (3, -3, 3), which points in the same direction as (1, -1, 1). The equation of the 
plane, therefore, becomes x – y + z = Z. Plugging in A, B, or C reveals that the constant Z = 3, and so the 
final equation is x-y+z=3. This is already in the required form, with a = -1, b =1, and c = 3. 

 

6. A – This question is very quick if #5 is solved correctly. A line orthogonal to the plane will be in the 

direction of the plane’s normal, or (1, -1, 1). A line in this direction passing through D can be represented 
by s(t) = (1, -1, 1)t + (-1, 4, -1). In a slightly different form, s(t) = (t-1, 4-t, t-1). There are other possible 

representations of this line, but of the given choices, only A is correct.  

 
7. A – This equality is incorrect. The correct form, which would have been a form of Green’s Theorem, is 

        
 

 =   
  

   
  

  

  
)    .  

 
8. B – The first derivative gives velocity: (t

2
-1, 2t, 0). The second derivative gives the desired 

acceleration: (2t, 2, 0). When t = 1, this becomes (2, 2, 0).  

 

9. E(5) – We already calculated velocity as (t
2
-1, 2t, 0). Speed is the magnitude of this vector, so 

          = t
2
+1. When t =2, speed is 5.  

 

10. D – Arc length is calculated as the integral of speed over a time interval. In our case, it is     
 

  

    = 28/3.  

 

11. C –      
    

     
    

      

            , so the limit is 0.  

 

12. A – If you fix y=0, the limit is 0. Fix y = x
2
, the limit is ½. Since it approaches multiple values, the 

limit does not exist.  

 
13. B – An easily provable theorem states this property of line integrals over orientation-reversing paths. 

 

14. E(0) – Clairaut’s Theorem guarantees the equivalence of mixed partials as long as the partials are 
continuous.  
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15. B – This can be visualized as a cylinder when unwound, with circle radius 1 and height 6  (the 

circumference of the circle of rotation). The volume is thus 6  2
. Pappus’ Theorem is the more technical 

form of this logic.  
 

16. B – This is Fubini’s Theorem 

 

17. D – In the two-dimensional case, curl = 
  

  
  

  

  
. Here, 

  

  
 =      =   at (0,1).  

  

  
 =      = 0. Thus, 

curl is   – 0 =  . Because the curl does not equal zero at all points, the vector field cannot be a gradient 

vector field.  

 

18. C – ∇ F(x,y,z) = (siny, xcosy + sinz, ycosz) = (0, -1,  ) at the stated point. The plane becomes:  

  – (y-  ) +  z = 0, which simplifies to         .  

 
19. C – This is an application of the Implicit Function Theorem. 

 

20. B –  
  

  
            

  

  
    Therefore, 

  

  
(1,  ) = 0/   = 0.  

 

21. B – First calculate     after multiplying out a few terms, the pattern becomes clear.    =  
  
  

 . As 

n approaches infinity, the 0 and 1 entries will approach 0, but the n entry will approach 1. The resulting 

matrix is  
  
  

 , and the sum of the entries is 1.  

 

22. A –  
        

        
 =  

                           

                          
           

 . Expanding along the bottom row and 

simplifying yields the concise answer of        , and the absolute value is just the positive. However, 

we could have known this without any calculation, as        is the “change of variables” factor used 

when integrating in spherical coordinates.  
 

23. C –              =                         = -2   -     2    = 0           2       . Since    is some scalar 

multiple of    , the two vectors must be parallel and so          .  

 

24. A – Beginning with the equality         2        found in #23, we know that         =     2
 = 

 
      

 
(         =  

      

 
. Taking the square root of both sides gives           2  , so        and so    = -

2   .  

         = -2       = -4.  
 
25. D – There are two constraints:  g1(x,y,z) = x

2
 + y

2
 – 2 = 0, and g2(x,y,z) = x + z – 1 = 0. We must find 

x, y, z, λ1, λ2 such that ∇f(x,y,z) = λ1∇g1(x,y,z) + λ2∇g2(x,y,z)    and  g1(x,y,z) = 0, g2(x,y,z) = 0.  

After computing the gradients, we get the 5 equations:   

1 = λ1(2x) + λ2 ;   1 = λ1(2y) ;   1 = λ2  ;       x
2
+y

2
=2 ;    x + z = 1.  

We solve to get x = 0, y =    , z = 1.  

 

26. E (f =            ) – We know this is possible because the curl of the vector field is zero. 

Integrating the first term with respect to x yields           + l(y,z) + m(y) + n(z) + C. But, the l, m, 

and n terms are actually 0, as seen when taking the derivative with respect to y and z.  
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27. E – This question is a matter of basic integration done 3 times. First evaluating the inner integral, we 

get      
   

 
    

 

 

 

 
. Again working from the inside, we simplify to  

  

 
 

  

 

 

 
   = (1/12) + (1/30) = 

21/180.  

 

28. B – Let       and      . Then we have the equation        , a circle with area  . To 

find the area in terms of the original variables, however, we must multiply this by the Jacobian:  

  

  

  

  
  

  

  

  

  

= 
 

  
, giving the answer of 

   

 
.  

 

29. D – C bounds the surface S defined by z = 1 – x – y = f(x,y) for (x,y) in D = {(x,y)|x
2
+y

2 1}.  

Set F = -y
3
i + x

3
j – z

3
k, which has curl ∇ x F = (3x

2
 + 3y

2
)k. By Stokes’ Theorem, the desired line integral 

equals the surface integral       
 

     =               
 

.  

We can change this to polar coordinates, yielding:   3          
  

 

 

 
 =        

 

 
 =     .  

 

30. C – We need a vector field such that F n = x
2
 + y + z. At any point on the ball, the outward unit 

normal n to    is n = xi + yj + zk, since on   , x
2
 + y

2
 + z

2
 = 1 and the radius vector is normal to the 

sphere.  

We therefore see that our vector field F = xi + j + k.   div F = 1+0+0 = 1.  

By the divergence theorem,            
  

 =    
 

 = volume(W) = 
  

 
.  

 


