#0 Mu Bowl MA© National Convention 2015

For the curve with equation $y^2 + xy = 15$, find the sum of the slopes of the tangents to the curve at the points where x = 2 or x = 14.

#0 Mu Bowl MA© National Convention 2015

For the curve with equation $y^2 + xy = 15$, find the sum of the slopes of the tangents to the curve at the points where x = 2 or x = 14.

_	#1 Mu Bowl MA© National Convention 2015	
$A = \lim_{x \to 3^{-}} \frac{x^3 2x - 6 }{x - 3}$	$\mathbf{B} = \lim_{x \to 0} \left(\frac{3^x + 5^x}{2} \right)^{\frac{1}{x}}$	
$C = \lim_{x \to \infty} \left(\frac{3^x + 5^x}{2} \right)^{\frac{1}{x}}$	$D = \lim_{x \to 1} \frac{x^x - x}{1 - x + \ln x}$	

$$D = \lim_{x \to 1} \frac{x - x}{1 - x + \ln x}$$

Find (AD+C)B.

#1 Mu Bowl MA_O National Convention 2015

A = $\lim_{x \to 3^{-}} \frac{x^3 2x - 6 }{x - 3}$	$\mathbf{B} = \lim_{x \to 0} \left(\frac{3^x + 5^x}{2}\right)^{\frac{1}{x}}$
$C = \lim_{x \to \infty} \left(\frac{3^x + 5^x}{2} \right)^{\frac{1}{x}}$	$D = \lim_{x \to 1} \frac{x^x - x}{1 - x + \ln x}$

Find (AD+C)B.

#2 Mu Bowl MA© National Convention 2015

A ball is tossed into the air from a bridge and its height, y (in feet), above the ground t seconds after it is thrown is given by:

$$y = f(t) = -16t^2 + 32t + A$$

A = How high above the ground is the bridge if it takes 2 seconds for the ball to pass the bridge on the way down and 4 total seconds to hit the ground?

B = What is the average velocity, in ft/sec, of the ball for the first second?

C = What is the ball's speed, in ft/sec, when it hits the ground?

D = What is the peak height of the ball?

Find $\frac{C}{D-A+B}$.

#2 Mu Bowl MA© National Convention 2015

A ball is tossed into the air from a bridge and its height, y (in feet), above the ground t seconds after it is thrown is given by:

$$y = f(t) = -16t^2 + 32t + A$$

A = How high above the ground is the bridge if it takes 2 seconds for the ball to pass the bridge on the way down and 4 total seconds to hit the ground?

B = What is the average velocity, in ft/sec, of the ball for the first second?

C = What is the ball's speed, in ft/sec, when it hits the ground?

D = What is the peak height of the ball?

Find $\frac{C}{D-A+B}$.

#3 Mu Bowl MA© National Convention 2015

A rectangle has one side on the positive *x*-axis, one side on the positive *y*-axis, one vertex at the origin and one vertex on the curve $y = e^{-2x}$.

A = Find the maximum area of the rectangle

 $\mathbf{B} = \mathbf{Find}$ the minimum perimeter of the rectangle

Find $A \times e^{B}$.

#3 Mu Bowl MA© National Convention 2015

A rectangle has one side on the positive x-axis, one side on the positive y-axis, one vertex at the origin and one vertex on the curve $y = e^{-2x}$.

A = Find the maximum area of the rectangle

 $\mathbf{B} = \mathbf{Find}$ the minimum perimeter of the rectangle

Find $A \times e^{B}$.

If $f(x) = x^3$ and $g(x) = x^{\frac{1}{3}}$

Let A be the area of the region between f(x) and g(x).

Let B be the volume of the solid obtained by rotating the region between f(x) and g(x) about the x-axis.

Let C be the volume of the solid obtained by rotating the area in the first quadrant between f(x) and g(x) about the line y = 1.

Find $\frac{B}{C} + A$.

#4 Mu Bowl MA© National Convention 2015

If $f(x) = x^3$ and $g(x) = x^{\frac{1}{3}}$

Let A be the area of the region between f(x) and g(x).

Let B be the volume of the solid obtained by rotating the region between f(x) and g(x) about the x-axis.

Let C be the volume of the solid obtained by rotating the area in the first quadrant between f(x) and g(x) about the line y = 1.

Find $\frac{B}{C} + A$.

#5 Mu Bowl MA© National Convention 2015

A: $\mathop{\overset{\scriptstyle{\scriptstyle{\leftarrow}}}{\scriptstyle{a}}}_{n=1} \frac{(n-1)!}{4^n}$	
B: $\mathop{\overset{\vee}{a}}_{n=1}^{\pm} \frac{\sin \overset{\circ}{c} \frac{\rho n \overset{\circ}{0}}{2} \overset{\circ}{\frac{\phi}{\partial}}}{n}$	
C: $\mathop{\overset{\scriptstyle}{a}}_{n=1}^{\times} \frac{1}{(\ln n)^2}$	
D: $\overset{\neq}{a}_{n=1}^{(-1)^n} \frac{(n+1)}{n^n}$	<i>n</i>

If a series converges absolutely it is assigned a value of 1. If a series converges conditionally it is assigned a value of 0. If a series diverges it is assigned a value of -1.

Find A + B + C + D.

	#5 Mu Bowl MA© National Convention 2015
A:	$ \overset{\vee}{\underset{n=1}{}} \frac{(n-1)!}{4^n} $
B:	$\overset{\times}{\underset{n=1}{\overset{\text{sin}}{\overset{\text{R}}{}}}}\frac{\sin\overset{\text{R}}{\overset{\text{p}}{}}\frac{pn\overset{\text{o}}{\overset{\text{i}}{\overset{\text{sin}}{}}}{\overset{\text{d}}{\overset{\text{sin}}{\overset{\text{sin}}{}}}}{n}$
C:	$\mathop{\overset{\scriptstyle}{a}}_{n=1}^{\overset{\scriptstyle}{a}}\frac{1}{\left(\ln n\right)^2}$
D:	$ \overset{\text{``}}{\underset{n=1}{\overset{\text{``}}{\overset{\text{`}}{\overset{\text{`}}{\overset{\text{`}}{\overset{\text{`}}{\overset{\text{`}}{\overset{\text{`}}{\overset{\text{`}}{\overset{\text{`}}{\overset{\text{`}}{\overset{\text{`}}}{\overset{\text{`}}{\overset{\text{`}}{\overset{\text{`}}{\overset{\text{`}}}{\overset{\text{`}}{\overset{\text{`}}{\overset{\text{`}}}{\overset{\text{`}}{\overset{\text{`}}{\overset{\text{`}}{\overset{\text{`}}{\overset{\text{`}}}{\overset{\text{`}}{\overset{\text{`}}{\overset{\text{`}}}{\overset{\text{`}}{\overset{\text{`}}{\overset{\text{`}}}{\overset{\text{`}}{\overset{\text{`}}}{\overset{\text{`}}{\overset{\text{`}}}{\overset{\text{`}}}{\overset{}}}{\overset{}}{\overset{}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}}{\overset{}}{\overset{}}}{\overset{}}{\overset{}}}}{\overset{}}}{\overset{}}}{\overset{}}}}{\overset{}}}{\overset$

If a series converges absolutely it is assigned a value of 1. If a series converges conditionally it is assigned a value of 0. If a series diverges it is assigned a value of -1.

Find A + B + C + D.

Given $f(x) = 2x^3 + 4$,

A = The positive difference between the right and left-hand Riemann sums with equal subdivisions with n = 10 approximating $\int_{0}^{1} f(x) dx$.

B = The right-hand Riemann sum with n = 4 with equal subdivisions approximating $\oint f(x) dx$.

C = The left-Riemann sum with n = 4 with equal subdivisions approximating $\hat{0} f(x) dx$.

D = The trapezoidal Riemann sum with n = 4 with equal subdivisions approximating $\hat{f}(x) dx$.

Find $\frac{A}{D} + \frac{C}{B}$ (expressed as a single reduced improper fraction).

#6 Mu Bowl MA© National Convention 2015

Given $f(x) = 2x^3 + 4$,

A = The positive difference between the right and left-hand Riemann sums with equal subdivisions with n = 10 approximating $i \int_{0}^{1} f(x) dx$.

B = The right-hand Riemann sum with n = 4 with equal subdivisions approximating $\hat{0} f(x) dx$.

C = The left-Riemann sum with n = 4 with equal subdivisions approximating $\hat{0} f(x) dx$.

D = The trapezoidal Riemann sum with n = 4 with equal subdivisions approximating $\oint f(x) dx$.

Find $\frac{A}{D} + \frac{C}{B}$ (expressed as a single reduced improper fraction).

#7 Mu Bowl MA© National Convention 2015

At time t, the position of a particle is $x(t) = 4\sin(2t)$ and $y(t) = 4\cos(2t)$, with $0 \le t \le 2\pi$.

A =
$$\frac{dy}{dx}$$
 when $t = \frac{p}{8}$

B = Displacement of the particle over the given interval.

C = Total distance traveled by the particle over the given interval.

D = Speed of the particle at time t = p.

Find the value of $\frac{C}{D}(B-A)$.

#7 Mu Bowl MA© National Convention 2015

At time t, the position of a particle is $x(t) = 4\sin(2t)$ and $y(t) = 4\cos(2t)$, with $0 \le t \le 2\pi$.

A =
$$\frac{dy}{dx}$$
 when $t = \frac{\rho}{8}$

B = Displacement of the particle over the given interval.

C = Total distance traveled by the particle over the given interval.

D = Speed of the particle at time t = p.

Find the value of $\frac{C}{D}(B-A)$.

#8 Mu Bowl MA© National Convention 2015

For the function $f(x) = x^3 + 4x^2 + 5x + 20$,

A = the sum of the *x*-intercepts of f.

B = the sum of the *x*-coordinates of the relative extrema of *f*.

C = the sum of the *x*-coordinates of the inflection points of *f*.

D = the sum of the y-coordinates of the y-intercepts of f, f', and f''.

Find $\mathop{\mathbb{C}}\limits^{\mathfrak{A}} \frac{B \ddot{\mathsf{O}}^{(D+8A)}}{\dot{\mathsf{C}} \dot{\check{\mathsf{G}}}}$.

#8 Mu Bowl MA© National Convention 2015

For the function $f(x) = x^3 + 4x^2 + 5x + 20$,

A = the sum of the *x*-intercepts of f.

B = the sum of the *x*-coordinates of the relative extrema of *f*.

C = the sum of the *x*-coordinates of the inflection points of *f*.

D = the sum of the y-coordinates of the y-intercepts of f, f', and f''.

Find $\mathop{\mathbb{C}}\limits^{\mathfrak{A}} \frac{B \ddot{\mathsf{O}}^{(D+8A)}}{\dot{\mathsf{C}} \overset{\div}{C} \overset{\circ}{\vartheta}}$.

#9 Mu Bowl

MAO National Convention 2015 Given y = f(x) and the equation $x^4 - 5x^2y^2 + 4y^4 = 0$, let g(x) be the tangent line to the graph of f(x).

A = f'(2), given that f(2)=1.

B = y-intercept of g(x) at tangency point x = 2, y = 1

C = f'(-2) given that f(-2)=-2

D = y-intercept of g(x) at tangency point x = -2, y = -2

Find $\sqrt{2A} + B\sqrt{3} - \sqrt{C} - D\sqrt{7}$.

#9 Mu Bowl MAO National Convention 2015

Given y = f(x) and the equation $x^4 - 5x^2y^2 + 4y^4 = 0$, let g(x) be the tangent line to the graph of f(x).

A = f'(2) given that f(2)=1.

B = y-intercept of g(x) at tangency point x = 2, y = 1

C = f'(-2) given that f(-2)=-2

D = y-intercept of g(x) at tangency point x = -2, y = -2

Find $\sqrt{2A} + B\sqrt{3} - \sqrt{C} - D\sqrt{7}$.

 $A = \dot{0}_{-4}^{4} (x^{3} + 3x^{2} - 16x - 48) dx$ $B = \dot{0}_{-4}^{4} |x^{3} + 3x^{2} - 16x - 48| dx$

Find 4A + 4B.

#10 Mu Bowl MA© National Convention 2015

$$A = \bigcup_{-4}^{4} (x^3 + 3x^2 - 16x - 48) dx$$
$$B = \bigcup_{-4}^{4} |x^3 + 3x^2 - 16x - 48| dx$$

Find 4A + 4B.

#11 Mu Bowl MA© National Convention 2015

Given an initial value of y(0) = 1000 and the following equation:

$$\frac{dy}{dx} = 0.5x$$

Use Euler's method to solve the following:

A = y(2) using 2 equal steps (use decimal answers and round to the nearest thousandths)

B = y(2) using 3 equal steps (use decimal answers and round to the nearest thousandths)

C = y(2) using 4 equal steps (use decimal answers and round to the nearest thousandths)

Find the sum of A, B, and C.

#11 Mu Bowl MA© National Convention 2015

Given an initial value of y(0) = 1000 and the following equation:

$$\frac{dy}{dx} = 0.5x$$

Use Euler's method to solve the following:

A = y(2) using 2 equal steps (use decimal answers and round to the nearest thousandths) B = y(2) using 3 equal steps (use decimal answers and round to the nearest thousandths) C = y(2) using 4 equal steps (use decimal answers and round to the nearest thousandths) Find the sum of A, B, and C.

#12 Mu Bowl MA© National Convention 2015

Find y'(1) given that $y = \frac{(2x+7)^2(x+2)^3}{(1+2x)^4}$

#12 Mu Bowl MA© National Convention 2015

Find y'(1) given that $y = \frac{(2x+7)^2(x+2)^3}{(1+2x)^4}$.

#13 Mu Bowl MA© National Convention 2015

x	1	2	3	4
f(x)	2	1	4	3
f'(x)	4	2	3	1
g(x)	3	2	1	4
<i>g</i> '(<i>x</i>)	1	4	2	3

Given the table above, find the following:

A = h'(4) if
$$h(x) = f(g(g(x)))$$

B = h'(4) if $h(x) = e^{f(x)\cdot g(x)}$
C = h'(4) if $h(x) = \ln(f(x) + g(x))$
D = h'(4) if $h(x) = \frac{f(x)}{2g(x)}$

Find
$$\frac{B}{-32D+14C} + A$$
.

#13 Mu Bowl MA© National Convention 2015

x	1	2	3	4
f(x)	2	1	4	3
f'(x)	4	2	3	1
g(x)	3	2	1	4
<i>g</i> '(<i>x</i>)	1	4	2	3

Given the table above, find the following:

A = h'(4) if
$$h(x) = f(g(g(x)))$$

B = h'(4) if $h(x) = e^{f(x) \cdot g(x)}$
C = h'(4) if $h(x) = \ln(f(x) + g(x))$
D = h'(4) if $h(x) = \frac{f(x)}{2g(x)}$

Find $\frac{B}{-32D+14C} + A$.

#14 Mu Bowl MA© National Convention 2015

Sand falling at a rate of $4 \text{ ft}^3/\text{s}$ forms a conical pile whose radius is always twice its height as it continues to accumulate sand.

A = rate of change, in ft/s, of the height when the cone has a volume of $\frac{4\rho}{3}$.

B = rate of change of the height when the cone has a volume of 36p.

Find $\frac{B}{A}$.

#14 Mu Bowl MA© National Convention 2015

Sand falling at a rate of $4 \text{ ft}^3/\text{s}$ forms a conical pile whose radius is always twice its height as it continues to accumulate sand.

A = rate of change, in ft/s, of the height when the cone has a volume of $\frac{4\rho}{3}$.

B = rate of change of the height when the cone has a volume of 36ρ .

Find $\frac{B}{A}$.