$$
A = \int_{-2016}^{2016} x^2 \sin x^5 dx \qquad \qquad B = \int_{-\infty}^{\infty} e^{-x^2} dx \qquad \qquad C = \sum_{n=1}^{\infty} \frac{1}{n^2}
$$

Compute ABC.

#0 Mu Bowl MA Θ National Convention 2016

$$
A = \int_{-2016}^{2016} x^2 \sin x^5 dx \qquad \qquad B = \int_{-\infty}^{\infty} e^{-x^2} dx \qquad \qquad C = \sum_{n=1}^{\infty} \frac{1}{n^2}
$$

Compute ABC.

#1 Mu Bowl MA Θ National Convention 2016

Let *R* be the region bound by the graphs of $y = \sqrt{x}$ and $x = 2y$.

A = the volume when *R* is revolved about the x-axis.

 $B =$ the volume when *R* is revolved about the y-axis.

C = the volume when *R* is revolved about $y = -1$.

D = the volume when *R* is revolved about $x = 4$.

Compute $A + B + C + D$.

#1 Mu Bowl MA Θ National Convention 2016

Let *R* be the region bound by the graphs of $y = \sqrt{x}$ and $x = 2y$.

A = the volume when *R* is revolved about the x-axis.

 $B =$ the volume when *R* is revolved about the y-axis.

C = the volume when *R* is revolved about $y = -1$.

D = the volume when *R* is revolved about $x = 4$.

Compute $A + B + C + D$.

#2 Mu Bowl MA Θ National Convention 2016

$$
A = \lim_{x \to 1} \frac{3x^5 - 9x^3 + 13x^2 - 14x + 7}{5x^4 - 3x^3 - 13x^2 + 15x - 4}
$$

\n
$$
B = \lim_{x \to 2} \frac{\sqrt{x+2} - 2}{\sqrt{3x+3} - 3}
$$

\n
$$
C = \lim_{h \to 0} \frac{\sin(\frac{\pi}{3} + h) - \sin(\frac{\pi}{3})}{h}
$$

\n
$$
D = \lim_{x \to \infty} (\sqrt{x^2 + 5x} - \sqrt{x^2 - 3x})
$$

\n
$$
E = \lim_{x \to \infty} (1 - \frac{3}{x})^{2x}
$$

Compute $ABCD$ ln E .

#2 Mu Bowl MA Θ National Convention 2016

$$
A = \lim_{x \to 1} \frac{3x^5 - 9x^3 + 13x^2 - 14x + 7}{5x^4 - 3x^3 - 13x^2 + 15x - 4}
$$

\n
$$
B = \lim_{x \to 2} \frac{\sqrt{x+2} - 2}{\sqrt{3x+3} - 3}
$$

\n
$$
C = \lim_{h \to 0} \frac{\sin(\frac{\pi}{3} + h) - \sin(\frac{\pi}{3})}{h}
$$

\n
$$
D = \lim_{x \to \infty} (\sqrt{x^2 + 5x} - \sqrt{x^2 - 3x})
$$

\n
$$
E = \lim_{x \to \infty} (1 - \frac{3}{x})^{2x}
$$

Compute $ABCD$ ln E .

#3 Mu Bowl MA Θ National Convention 2016

Let $f(x) = x^2$. $S(a, b)$ is defined to be the sum of the slope(s) of the line(s) tangent to f that pass through the point (a, b) . If no tangent line to f pass through (a, b) , then $S(a, b) = 0$. For example: $S(1, 1) = 2$, since $y = 2x - 1$ is the only line tangent to f that passes through $(1, 1)$; $S(0, 1) = 0$, since no tangent line to f pass through $(0, 1)$; $S(0, -1) = 0$, since both $y = 2x - 1$ and $y = -2x - 1$ are tangent to f and pass through $(0, -1)$. Compute

$$
\sum_{b=0}^{100} \sum_{a=0}^{10} S(a, b)
$$

#3 Mu Bowl MANational Convention 2016

Let $f(x) = x^2$. $S(a, b)$ is defined to be the sum of the slope(s) of the line(s) tangent to f that pass through the point (a, b) . If no tangent line to f pass through (a, b) , then $S(a, b) = 0$. For example: $S(1, 1) = 2$, since $y = 2x - 1$ is the only line tangent to f that passes through (1, 1); $S(0, 1) = 0$, since no tangent line to f pass through $(0, 1)$; $S(0, -1) = 0$, since both $y = 2x - 1$ and $y = -2x - 1$ are tangent to f and pass through $(0, -1)$. Compute

$$
\sum_{b=0}^{100} \sum_{a=0}^{10} S(a, b)
$$

A = the area enclosed by the rectangular equation $4x^2 + 9y^2 - 16x - 54y + 61 = 0$.

B = the area enclosed by the polar equation $r = 3 \sin 3\theta$.

C = the area enclosed by the parametric equation $x = \sin t$, $y = 3 \sin 2t$.

Compute $\frac{A}{B} + C$.

#4 Mu Bowl MA Θ National Convention 2016

A = the area enclosed by the rectangular equation $4x^2 + 9y^2 - 16x - 54y + 61 = 0$.

B = the area enclosed by the polar equation $r = 3 \sin 3\theta$.

C = the area enclosed by the parametric equation $x = \sin t$, $y = 3 \sin 2t$.

Compute $\frac{A}{B} + C$.

A. Let $f_1(x) = \sin x + \cos x$, approximate $f_1(0.2)$ using the line tangent to $f_1(x)$ at $x = 0$.

B. Let $f_2(x) = \sqrt{25 - x^2}$, approximate $f_2(3.1)$ using the line tangent to $f_2(x)$ at $x = 3$.

C. Let $f_3(x) = \frac{4}{x^2}$ $\frac{4}{x^2+3}$, approximate $f_3(-1.1)$ using the line tangent to $f_3(x)$ at $x = -1$.

D. Let $f_4(x) = x^3 - 6x^2 + 12x$, approximate $f_4(0.9)$ using the line tangent to $f_4(x)$ at $x = 1$.

Define $E(X)$ as a function of part *X* of this problem. The value of $E(X)$ is the value of the approximation if part *X* results in an overestimate, or the negation of the approximation if part *X* results in an underestimate. Compute $E(A) + E(B) + E(C) + E(D)$.

#5 Mu Bowl MA Θ National Convention 2016

A. Let $f_1(x) = \sin x + \cos x$, approximate $f_1(0.2)$ using the line tangent to $f_1(x)$ at $x = 0$. B. Let $f_2(x) = \sqrt{25 - x^2}$, approximate $f_2(3.1)$ using the line tangent to $f_2(x)$ at $x = 3$. C. Let $f_3(x) = \frac{4}{x^2}$ $\frac{4}{x^2+3}$, approximate $f_3(-1.1)$ using the line tangent to $f_3(x)$ at $x = -1$. D. Let $f_4(x) = x^3 - 6x^2 + 12x$, approximate $f_4(0.9)$ using the line tangent to $f_4(x)$ at $x = 1$. Define $E(X)$ as a function of part X of this problem. The value of $E(X)$ is the value of the approximation if

part *X* results in an overestimate, or the negation of the approximation if part *X* results in an underestimate. Compute $E(A) + E(B) + E(C) + E(D)$.

$$
A = \sum_{n=0}^{\infty} \frac{2n}{n!}
$$

$$
B = \sum_{n=0}^{\infty} \frac{2^n}{n!}
$$

$$
C = \sum_{n=0}^{\infty} \frac{n^2}{n!}
$$

Compute $A + B + C$.

#6 Mu Bowl MA Θ National Convention 2016

$$
A = \sum_{n=0}^{\infty} \frac{2n}{n!}
$$

$$
B = \sum_{n=0}^{\infty} \frac{2^n}{n!}
$$

$$
C = \sum_{n=0}^{\infty} \frac{n^2}{n!}
$$

Compute $A + B + C$.

 $A = \int_0^6 (36x - x^3) dx$ $\int_{0}^{0} (36x - x^3) dx$

 $B =$ approximation of A using midpoint Riemann sum with 3 equal intervals.

 $C =$ approximation of A using trapezoidal rule with 3 equal intervals.

D = approximation of A using Simpson's Rule with $n = 6$.

Compute $A + B - C - D$.

#7 Mu Bowl MA Θ National Convention 2016

 $A = \int_0^6 (36x - x^3) dx$ $\int_{0}^{0} (36x - x^3) dx$

 $B =$ approximation of A using midpoint Riemann sum with 3 equal intervals.

 $C =$ approximation of A using trapezoidal rule with 3 equal intervals.

D = approximation of A using Simpson's Rule with $n = 6$.

Compute $A + B - C - D$.

#8 Mu Bowl MA Θ National Convention 2016

A 200mL container is lined with a membrane that allows water to seep through at a rate proportional to the concentration of water in the container. The container is initially full of a 20% solution of alcohol in water. As water seeps out of the container, it is instantly replaced with a 20% solution of alcohol in water and remixed evenly. If 400mL of water seeps through in 2 hours, how many hours does it take in total for the concentration of alcohol inside the container to reach at least 90%?

#8 Mu Bowl MA Θ National Convention 2016

A 200mL container is lined with a membrane that allows water to seep through at a rate proportional to the concentration of water in the container. The container is initially full of a 20% solution of alcohol in water. As water seeps out of the container, it is instantly replaced with a 20% solution of alcohol in water and remixed evenly. If 400mL of water seeps through in 2 hours, how many hours does it take in total for the concentration of alcohol inside the container to reach at least 90%?

Let $f(x) = \frac{1}{2}x^2 + bx + c$, where *b* $\frac{1}{2}x^2 + bx + c$, where $b = 3, c = -8$. A = the greater of two zeros of $f(x)$. B = the rate of change of the greater of two zeros of $f(x)$ if *b* is changing at 2 per second and *c* is constant at the moment when $b = 3$, $c = -8$. C = the rate of change of the greater of two zeros of $f(x)$ if *b* is constant and *c* is changing at 2 per second at the moment when $b = 3$, $c = -8$. D = the rate of change of the greater of two zeros of $f(x)$ if *b* and *c* are changing at 2 per second at the moment when $b = 3$, $c = -8$. Compute $A + B + C + D$.

#9 Mu Bowl MA Θ National Convention 2016

Let $f(x) = \frac{1}{2}x^2 + bx + c$, where $b = 3$, $c = -8$. $\frac{1}{2}x^2 + bx + c$, where $b = 3, c = -8$.

A = the greater of two zeros of $f(x)$.

B = the rate of change of the greater of two zeros of $f(x)$ if *b* is changing at 2 per second and *c* is constant at the moment when $b = 3$, $c = -8$.

C = the rate of change of the greater of two zeros of $f(x)$ if *b* is constant and *c* is changing at 2 per second at the moment when $b = 3$, $c = -8$.

D = the rate of change of the greater of two zeros of $f(x)$ if *b* and *c* are changing at 2 per second at the moment when $b = 3$, $c = -8$.

Compute $A + B + C + D$.

#10 Mu Bowl MA Θ National Convention 2016

f is a twice differentiable function over all real numbers. The table below shows the value of f and f' at select values on the interval [0, 10].

A = the minimum number of zeros of f on $(0, 10)$.

B = the minimum number of local maxima of f on $(0, 10)$.

 C = the minimum number of local minima of f on (0, 10).

D = the minimum number of points of inflection of f on $(0, 10)$.

Compute $A^2 + B^2 + C^2 + D^2$.

#10 Mu Bowl MANational Convention 2016

f is a twice differentiable function over all real numbers. The table below shows the value of f and f' at select values on the interval [0, 10].

A = the minimum number of zeros of f on $(0, 10)$.

B = the minimum number of local maxima of f on $(0, 10)$.

 C = the minimum number of local minima of f on $(0, 10)$.

D = the minimum number of points of inflection of f on $(0, 10)$.

Compute $A^2 + B^2 + C^2 + D^2$.

 f and g are invertible functions that are locally differentiable at 1, 2, 3, and 4. The table below shows the evaluation of those functions and their derivatives. Let

Compute $h'_1(1) + h'_2(3) + h'_3(2) + h'_4(4) + h'_5(3) + h'_6(4)$.

#11 Mu Bowl MA Θ National Convention 2016

 f and g are invertible functions that are locally differentiable at 1, 2, 3, and 4. The table below shows the evaluation of those functions and their derivatives. Let

Compute $h'_1(1) + h'_2(3) + h'_3(2) + h'_4(4) + h'_5(3) + h'_6(4)$.

 $A = \int_{-2}^{1} x\sqrt{x+3} \, dx$ $\int_{-2}^{1} x\sqrt{x} + 3 dx$ $B = \int_0^3 x\sqrt{9 - x^2}$ $\int_{0}^{3} x\sqrt{9-x^2} dx$ $C = \int_0^2 x e^{x/2}$ $\int_0^2 xe^{x/2} dx$ $D = \int_0^{\frac{\pi}{2}} \sin 2x \, e^{\sin x}$ $\int_0^2 \sin 2x \, e^{\sin x} \, dx$ Compute $5A - B + C - 2D$.

#12 Mu Bowl MA Θ National Convention 2016

 $A = \int_{-2}^{1} x\sqrt{x+3} \, dx$ $\int_{-2}^{1} x\sqrt{x+3} dx$ $B = \int_0^3 x\sqrt{9 - x^2}$ $\int_{0}^{3} x\sqrt{9-x^2} dx$ $C = \int_0^2 x e^{x/2}$ $\int_0^2 xe^{x/2} dx$ $D = \int_0^{\frac{\pi}{2}} \sin 2x \, e^{\sin x}$ $\int_{0}^{\sqrt{2}} \sin 2x \, e^{\sin x} \, dx$ Compute $5A - B + C - 2D$.

Let $f(x) = x^2 e^x$. Let $f^{(k)}(x)$ denote the k^{th} derivative of $f(x)$, then the sum

$$
\sum_{k=1}^{20} f^{(k)}(x)
$$

can be expressed as $Ax^2e^x + Bxe^x + Ce^x$, where A, B, C are real. Compute $A + B + C$.

#13 Mu Bowl MA Θ National Convention 2016

Let $f(x) = x^2 e^x$. Let $f^{(k)}(x)$ denote the k^{th} derivative of $f(x)$, then the sum

$$
\sum_{k=1}^{20} f^{(k)}(x)
$$

can be expressed as $Ax^2e^x + Bxe^x + Ce^x$, where A, B, C are real. Compute $A + B + C$.

Let ℓ_1 be the line described by $x = \frac{y-3}{2}$ $\frac{-3}{2} = \frac{z-3}{2}$ $\frac{x}{2}$, and ℓ_2 be the line $\frac{x}{2} = \frac{y+1}{3}$ $\frac{+1}{3} = \frac{z+4}{6}$ $\frac{+4}{6}$.

Particle A moves along ℓ_1 at a constant speed of 6 units per second. Particle B moves along ℓ_2 at a constant speed of 7 units per second. At $t = 0$, particle A is at point $(0, 3, 3)$, and particle B is at the point $(0, -1, -4)$. Both particles are moving in the direction such that their x-coordinates are increasing. At time $t = T$ seconds, the two particles make their closest approach to each other, where they are D units apart. Compute $T^2 + D^2$.

#14 Mu Bowl MANational Convention 2016

Let ℓ_1 be the line described by $x = \frac{y-3}{2} = \frac{z-3}{2}$, and ℓ_2 be the line $\frac{x}{2} = \frac{y+1}{3}$ $\frac{-3}{2} = \frac{z-3}{2}$ $\frac{x}{2}$, and ℓ_2 be the line $\frac{x}{2} = \frac{y+1}{3}$ $\frac{+1}{3} = \frac{z+4}{6}$ $\frac{1}{6}$. Particle A moves along ℓ_1 at a constant speed of 6 units per second. Particle B moves along ℓ_2 at a constant speed of 7 units per second. At $t = 0$, particle A is at point $(0, 3, 3)$, and particle B is at the point (0, −1, −4). Both particles are moving in the direction such that their x-coordinates are increasing. At time $t = T$ seconds, the two particles make their closest approach to each other, where they are D units apart. Compute $T^2 + D^2$.