1. D 2. B
3. A 4. B
5. B
6. C 7. C
8. B
9. E
10. E
11. B 12. B
12. B 13. A
14. B
15. C
16. C
17. B
18. C
19. D
20. B
21. B 22. D
22. D 23. A
24. B
25. B
26. D
27. D
28. D
29. B
30. A

Solutions

- 1. The recurrence relation makes a_n an arithmetic sequence. Thus $a_n = (a_1 a_0)n + 3 = 4n + 3$ $f_0 = 3$. $a_{23} = 4 \times 23 + 3 = 95$.
- 2. The degree of the polynomial is number of finite differences that must be taken before the (infinite) sequence is constant (see http://en.wikipedia.org/wiki/Newton series). 5, 4, 1, -1, 1, 10
 -1, -3, -2, 2, 9
 -2, 1, 4, 7
 3, 3, 3
 Degree: 3

3.

$$x = \frac{26}{11 + x}$$
$$x^{2} + 11x - 26 = 0$$
$$x = 2, -13$$

2 is the only value greater than 0.

4.
$$f^{(n)}(n) = e^{\frac{n}{4}}/4^n = \left(\sqrt[4]{e}/4\right)^n$$
. $\sum_{n=0}^{\infty} f^{(n)}(n) = \frac{1}{1 - \sqrt[4]{e}/4} = \frac{4}{4 - \sqrt[4]{e}}$

- 5. $\int_{2}^{\infty} \frac{1}{(x \ln^{p} x)} dx = \int_{\ln 2}^{\infty} u^{-p} du$, which converges for p > 1.
- 6. Limit comparison test: $0 \ge \frac{1}{1-n} > -\frac{1}{n}$ and $\lim_{n \to \infty} -\frac{n}{1-n} = 1 > 0$
- 7. Limit comparison test: $\lim_{n\to\infty} \left(-\frac{1}{n}\right)^n / \left(-\frac{1}{n}\right) = \left(-\frac{1}{n}\right)^{n-1} = 0$
- 8. One could use ratio test, but Stirling's approximation is simpler. $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$. The series is thus approximately $\sum_{n=1}^{\infty} \frac{(xn)^n}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = \sum_{n=1}^{\infty} \frac{(ex)^n}{\sqrt{2\pi n}}$. Radius $=\frac{1}{e}$.
- 9. Converges when: $-1 \le \frac{2x-1}{x+2} < 1$ Solve for edges: $-1 = \frac{2x-1}{x+2} \text{ OR } \frac{2x-1}{x+2} = 1$ $x = -1/3 \text{ or } x = 3. -1/3 \le x < 3.$

- 10. None are necessarily true. Here are counter examples
 - I. $C = \frac{(-1)^n}{\sqrt{n}}$, $C \cdot C = \frac{1}{n}$ diverges II. $C = 2^{-n}$, $D = 2^n$, $C \cdot D = 1$ diverges II. $C = 2^{-n}$, D = 1, $C \cdot D = 2^{-n}$ converges II. $D = \frac{1}{n}$, $D \cdot D = \frac{1}{n^2}$ converges
- 11. Sequence mod 13 is 1, 1, 2, 3, 5, 8, 0, 8, 8, 3, 11, 1, 12, 0,... (12 is congruent to -1 so the next 14 are 13 minus the first 14). Repeats every 7.
- 12. $|a_n| = 1/n$, so it does not converge absolutely. The real component of the sum is $-\frac{1}{2} + \left(-\frac{1}{4}\right) + \frac{1}{3} + \left(-\frac{1}{8}\right) + \left(-\frac{1}{10}\right) + \frac{1}{6} + \cdots$ $= \left(-\frac{3}{4}\right) + \frac{1}{3} + \left(-\frac{9}{40}\right) + \frac{1}{6} + \cdots$, which is a diminishing alternating series and converges.

and the same for the imaginary component.

$$13.1+6 \times \left(\frac{1}{3}\right)^3 + 6 \times 5 \times \left(\frac{1}{3}\right)^6 + 6 \times 5^2 \times \left(\frac{1}{3}\right)^9 + \cdots$$
$$= 1 + \frac{2}{9} + \frac{2}{9} \times \left(\frac{5}{27}\right) + \frac{2}{9} \times \left(\frac{5}{27}\right)^2 + \cdots$$
$$= 1 + \frac{2/9}{(1-5/27)}$$
$$= \frac{14}{11}$$

- 14. $\lim_{n \to \infty} \sum_{i=1}^{n^2} \frac{e^{i/n}}{ne^n} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n^2} e^{i/n-n} = \int_{-\infty}^0 e^x dx = 1$
- $15.\left(\frac{108+996}{2}\right)\left(\frac{996-108}{12}+1\right) = 552 \times 75 = 41,400$
- 16. 6 complex roots of any 6th power, but only three distinct roots for the square of the common ratio.
- 17. On the n^{th} day, 5^n people have seen the video $\log_5 1,000,000 = 6 \log_5 10 \approx 8.6$. It will pass 1,000,000 on the 9th day.

18. $\frac{f(x+\pi)}{f(x)} = \frac{c^{x+\pi}\cos(x+\pi)}{c^x\cos(x)} = -c^{\pi} > -1$, Then we wish to find the sum of an infinite geometric series with $r = -c^{\pi}$, and $a_0 = \int_0^{\pi} f(x) dx$. We have $r = \frac{f(x+\pi)}{f(x)} = \frac{B}{A}$, and $A = a_0(1+r)$, so $a_0 = \frac{A}{1+r} = \frac{A}{1+\frac{B}{A}}$. The sum of the series is $\frac{a_0}{1-r} = \frac{A}{(1+\frac{B}{A})(1-\frac{B}{A})} = \frac{A^3}{A^2-B^2}$.

19.
$$\cos^2 x = \frac{1}{2} + \frac{1}{2}\cos(2x) = \frac{1}{2} + \sum_{n=0}^{\infty} \frac{(2x)^{2n}}{2(2n)!}$$

20.
$$\left(\frac{14(14+1)}{2}\right)^2 = 35^2 = 11,025$$

- 21. $\sum_{n=1}^{\infty} \frac{1}{n(n+3)} = \sum_{n=1}^{\infty} \frac{1}{3} \left(\frac{1}{n} \frac{1}{n+3} \right) = \frac{1}{3} \sum_{n=1}^{3} \frac{1}{n} = \frac{11}{18}$
- 22. D is the answer by inspection
- 23. You want $\pi \int_0^\infty f(x)^2 < \infty$, which given that f is monotonically decreasing and has a finite y-intercept, is true if $\sum_{n=0}^\infty f^2(n) < \infty$, and since it's positive that is true if $\sum_{n=0}^\infty f(n) < \infty$ as well.
- 24. Since they are increasing, order is fixed and it's just the number of nonempty subsets of a hundred element set, which is $2^{100} 1$.
- 25. $\prod_{n=1}^{\infty} e^{i/n^2} = e^{i\sum_{n=1}^{\infty} 1/n^2} = e^{i\pi^2/6} = e^{i(\pi/2+\epsilon)}$. Quadrant II.

26.
$$\tan'(x) = \sec^2 x$$
 and $\tan''(x) = 2\sec^2 x \tan x$
 $\tan\left(\frac{\pi}{3}\right) \approx \tan\left(\frac{\pi}{4}\right) + \tan'\left(\frac{\pi}{4}\right)\left(\frac{\pi}{3} - \frac{\pi}{4}\right) + \frac{1}{2}\tan''\left(\frac{\pi}{4}\right)\left(\frac{\pi}{3} - \frac{\pi}{4}\right)^2$
 $= \tan\left(\frac{\pi}{4}\right) + \sec^2\left(\frac{\pi}{4}\right)\left(\frac{\pi}{12}\right) + \frac{1}{2}\left(2\sec^2\left(\frac{\pi}{4}\right)\tan\left(\frac{\pi}{4}\right)\right)\left(\frac{\pi}{12}\right)^2$
 $= 1 + \frac{\pi}{6} + \frac{\pi^2}{72}$

27.
$$f^{(n)}(e) = \frac{(-1)^{n-1}(n-1)!}{e^n} \Rightarrow \frac{f^{(n)}(e)}{n!} = \frac{(-1)^{n-1}}{ne^n}$$
, so the series is $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{ne^n} (x-e)^n$

27.
$$f^{(n)}(e) = \frac{(-1)^{n-1}(n-1)!}{e^n} \Rightarrow \frac{f^{(n)}(e)}{n!} = \frac{(-1)^{n-1}}{ne^n}$$
, so the series is $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{ne^n} (x-e)^n$

$$=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \left(\frac{x}{e} - 1\right)^n = -\sum_{n=1}^{\infty} \frac{1}{n} \left(-\frac{x}{e} + 1\right)^n$$

$$28. x = \sqrt{2550 + x} \to 0 = x^2 - x - 2550 = (x - 51)(x + 50) \to x = 51 \text{ since } x > 0$$

$$29. \int_1^{\infty} (e^{-|x|} - e^{-x}) dx = \sum_{i=1}^{\infty} e^{-i} - \int_1^{\infty} e^{-x} dx = \frac{e^{-1}}{1 - e^{-1}} - e^{-1} = \frac{1}{e^2 - e^2}$$

$$30. \ 0. \overline{814} = \frac{814}{999} = \frac{22}{27}$$