1. B. 2. C. 3. A. 4. A. 5. D .		
6. B. 7. B. 8. C. 9. D. 10. D.		
11. A. 12. E. 13. C. 14. C. 15. C.		
16. C. 17. B. 18. D. 19. B. 20. A.		
21. D. 22. D. 23. B. 24. E. 25. A.		
26. A. 27. C. 28. A. 29. C. 30. B.		

1. B. Euclid

2. C. De Divine Proportione

- 3. A. Phidias
- 4. A. Kepler
- 5. **D**. Binet

6. **B.**

Answer choice A is incorrect because f does not terminate. Answer choice B is the correct answer. Answer choice C is incorrect because it is the limit of the ratio rather than the ratio of two arbitrary successive Fibonacci numbers. Answer choice D is just flat out wrong.

7. **B.**

f can be the root of a polynomial with rational coefficients if $\frac{1+\sqrt{5}}{2}$ is produced as a root (ex.

 $x^2 - x - 1 = 0$), so the golden ratio is not transcendental. It is, however, irrational, complex, and real.

8. **C.**

The easiest way is to do the calculation the long way. Binet's formula would also work:

$$F_{n} = \frac{\left(1 + \sqrt{5}\right)^{n} - \left(1 - \sqrt{5}\right)^{n}}{2^{n}\sqrt{5}}.$$

9. **D.** $A = \pi\phi^{2} = \pi\left(1 + \phi\right) = \pi\left(2 + \frac{1}{\phi}\right) = \pi\left(3 - \frac{1}{\phi^{2}}\right)$

10. **D.**

Golden rectangles have side lengths in proportion of f. Thus, the longer side has length

$$32\phi = 32\left(\frac{1+\sqrt{5}}{2}\right) \approx 32\left(\frac{1+9/4}{2}\right) = 52$$
 meters.
11. **A**.

Looking at where the pattern repeats, we arrive at $y = \frac{1}{1+y}$, which has roots at $y = \frac{-1 \pm \sqrt{5}}{2}$.

Taking the positive solution, $\frac{\sqrt{5}-1}{2} = f - 1 = \frac{1}{f}$.

12. **E.** All vertices lie on the plane x + y = z. Therefore, the tetrahedron encloses no volume.

13. C. By plugging in answer choices and applying $f^2 = f + 1$:

$$f^{\binom{f^2-\frac{1}{f}}{f}} - \frac{1}{f} = 2 \longrightarrow f^{\binom{f+1-(f-1)}{f}} = 2 + \frac{1}{f} \longrightarrow f^2 = 2 + \frac{1}{f} \longrightarrow f + 1 = 2 + \frac{1}{f} \longrightarrow f^2 = f + 1$$

\$\scrimt{x} = 2\$

14. **C.**

First assume that the smallest squares have side length 1, representing the first 2 Fibonacci numbers. The largest square is the 9th Fibonacci number, which is 34. Thus, in this example, the side length we are looking for is (1234)(34) = 41,956.

15. C.

$$SA = (4) \left(\frac{1}{2}\right) (2) \left(\sqrt{1+f}\right) + 4 = 4f + 4$$

$$V = \frac{1}{3}Bh = \left(\frac{1}{3}\right) (4) \left(\sqrt{f}\right) = \frac{4}{3}\sqrt{f}$$

$$\frac{SA}{V} = (4f + 4) \left(\frac{3}{4\sqrt{f}}\right) = 3 \left(f^{1/2} + f^{-1/2}\right)$$

i.
$$.5 + .5 \times 5^{.5} = \frac{1 + \sqrt{5}}{2} = \phi$$

ii. $\frac{5 + 5^{.5}}{5 - .5} = 1.608 \xrightarrow{\simeq} 1 f$
iii. $a = \left(\frac{5 + 5^{.5}}{5 - 5^{.5}}\right)^{.5} \rightarrow a^2 = \frac{5 + \sqrt{5}}{5 - \sqrt{5}} = \frac{3 + \sqrt{5}}{2} = \phi^2 \rightarrow a = \phi$

17. **B.**

Complete the chart:

F ₋₈	F7	F ₋₆	F5	<i>F</i> ₋₄	F ₋₃	<i>F</i> ₋₂	<i>F</i> ₋₁	F_0	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8
-21	13	-8	5	-3	2	-1	1	0	1	1	2	3	5	8	13	21

18. **D.** Observe a pattern: $f(1) = 1 \rightarrow 1$ $f(2) = 1 + 1 = 2 \rightarrow 2$ $f(3) = 1 + 1 + 1 = 1 + 2 = 2 + 1 \rightarrow 3$ $f(4) = 1 + 1 + 1 + 1 = 2 + 2 = 1 + 1 + 2 = 1 + 2 + 1 = 2 + 1 + 1 \rightarrow 5$: f(n) = f(n-1) + f(n-2)

Open All About Phi

FALSE

This is classic Fibonacci recursion. Therefore, in this problem, you are looking to find the 15th Fibonacci number, which is 610.

19. **B.**

Drop a perpendicular B_3H from B_3 to A_1A_2 . Because B_3H is a midline in $A_1A_2B_2$, its length is 1/2. By Pythagorean theorem, $A_3H = \sqrt{15}/2$ and $A_1H = A_1A_2/2 = \sqrt{3}/2$. Thus, $A_1A_3 = \frac{\sqrt{3} + \sqrt{15}}{2} = \frac{\sqrt{3}(1+\sqrt{5})}{2} = f\sqrt{3}$.

20. **A.**

As the index of the Fibonacci sequence approaches infinity, the ratio of each successive Fibonacci number approaches f. Thus, $\lim_{n\to\infty} \frac{F_{n+a}}{F_n} = f^a$. By definition (you could use an easy inductive pattern as well according to $f^a = f^{a-1} + f^{a-2}$), $f^a = F_a f + F_{a-1}$.

21. **D.**
$$f(x) = \frac{x}{1 - x - x^2} \to f\left(\frac{1}{10}\right) = \frac{10}{89} \to F_n = 89 \to n = 11$$

22. **D.**
i. $\sqrt{\frac{7 + 3\sqrt{5}}{2}} - 1 = \phi \to \sqrt{\frac{7 + 3\sqrt{5}}{2}} = \phi^2 \to \sqrt[4]{\frac{7 + 3\sqrt{5}}{2}} = \phi$ TRUE
ii. 21 and 47 are the 8th Fibonacci and Lucas numbers, not the 7th \Rightarrow
iii. $\sqrt[13]{\frac{521 + 233\sqrt{5}}{2}} = \sqrt[5]{\frac{11 + 5\sqrt{5}}{2}} = \phi$ TRUE

23. **B.**

For some r, a > 0, the three sides could be written as a, ar, and ar^2 , where a is irrelevant for this problem. Thus, for the triangle to exist, r must satisfy the following three inequalities:

$$r^{2} < 1 + r$$

 $r < 1 + r^{2}$
 $1 < r + r^{2}$

The first one is equivalent to $r^2 - 1 - r < 0$, which has roots at f and $-\frac{1}{f}$. We find that r should satisfy 0 < r < f. The second inequality is always true.

The third inequality is equivalent to $r^2 + r - 1 > 0$, which is satisfied when r > 0 by $r > \frac{1}{f}$. Thus, the range for r that satisfies the three conditions is $\frac{1}{f} < r < f$. The length of this range is $f - \frac{1}{f} = 1$. 24. **E**.

Since BO is an angle bisector, O divides AC in the ratio of the sides $\frac{AB}{BC}$:

$$\frac{AO}{CO} = \frac{AB}{BC} = \frac{5}{3}$$

From here, $AO = \frac{5}{2}$ and $CO = \frac{3}{2}$. Thus the circle's radius r is $\frac{3}{2}$. By the power of the point theorem $BP \cdot NQ = BC^2$:

$$\left(BO - \frac{3}{2}\right)\left(BO + \frac{3}{2}\right) = 3^2 \rightarrow BO = \frac{3\sqrt{5}}{2}$$

From which we find $BP = \frac{3}{2} \left(\sqrt{5} - 1 \right)$

Finally,
$$\frac{PQ}{BP} = \frac{2r}{\left(\frac{3}{2}\left(\sqrt{5} - 1\right)\right)} = \frac{2}{\sqrt{5} - 1} = \frac{\sqrt{5} + 1}{2} = f$$

25. **A**.

This expression for f(n) is showing that the nth Fibonacci number is the sum of the nth diagonal in Pascal's triangle. Thus, $f(10) = F_{10} = 55$.

If you did not see that right away, you can arrive at the same conclusion algebraically:

$$f(0) = \sum_{k=0}^{0} \begin{pmatrix} -1-k \\ k \end{pmatrix} = 0$$

$$f(1) = \sum_{k=0}^{0} \begin{pmatrix} -k \\ k \end{pmatrix} = \frac{0!}{0!0!} = 1$$

$$f(2) = \sum_{k=0}^{0} \begin{pmatrix} 1-k \\ k \end{pmatrix} = \frac{1!}{1!0!} = 1$$

$$f(3) = \sum_{k=0}^{1} \begin{pmatrix} 2-k \\ k \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2$$

$$\vdots$$

$$f(n) = F_n$$

26. **A.**

Each interior angle of regular pentagon is $\frac{3\rho}{5}$

By Law of Cosines:

 $a^{2} = 1^{2} + 1^{2} - 2(1)(1)\cos(3p/5), \text{ where } a \text{ is side of pentagram}$ $a = \sqrt{2 - 2\cos(3p/5)} = \sqrt{\frac{1}{2}(3 + \sqrt{5})} = \sqrt{f + 1} = \sqrt{f^{2}} = f$

Therefore, the planned amount of flowers to be planted is 5a = 5f

Notice how a rhombus of side length 1 is formed due to parallel sides:

Therefore, $1 + b = f \rightarrow b = f - 1$

Planted flower perimeter = $10b = 10(f-1) = \frac{10}{f}$, according to $f^2 = 1 + f$

27. **C.**

Construct the following chart:

t	0	1	2	3	4	5	6
A_t	8	13	21	34	55	89	144
C_t	5	8	13	21	34	55	89

Notice how A_t follows the pattern of the Fibonacci sequence.

28. **A.**

Number of adult bunies at time t in terms A of and C:

 $A_t = A_{t-1} + C_{t-1} + N$

Number of child bunnies at time *t* in terms of *A*:

 $C_t = A_{t-1}$

Consolidating...

 $A_t = A_{t-1} + A_{t-2} + N$

29. **C.**

The number of adult and child bunnies at each timestep are each reduced by 1 - a. Therefore, the snakes must target adult bunnies only, before they get the chance to procreate. If the species were *P. eatsalottus*, then the child bunnies, A_{t-2} , would be affected by a factor of a^2 .

30. **B.** a = 55 b = 34 $\begin{vmatrix} b & a \\ a & a+b \end{vmatrix} = \begin{vmatrix} 34 & 55 \\ 55 & 89 \end{vmatrix} = 34 \cdot 89 - 55^2 = 1$