- 1. C
- 2. D
- 3. C
- 4. $\mathbf D$
- 5. C 6. D
- 7. B
- 8. B
- 9. C
- 10. D
- 11. B
- 12. D
- 13. C
- 14. A
- 15. A
- 16. D 17. B
- 18. C
- 19. B
- 20. B
- 21. D
- 22. E
- 23. D
- 24. C
- 25. B
- 26. B
- 27. C
- 28. A
- 29. D
- 30. A
- 1. C The polynomial factors to $(2x-1)(x+2)(x-2)$, so $x=\frac{1}{3}$ $\frac{1}{2}$, -2, 2, but 2 is the only positive solution.
- 2. D Over \mathbb{Z}_7 , the polynomial can be factored to $(2x 1)(x^2 4)$. So $2x \equiv 1$ or $x^2 \equiv 4$ modulo 7. The solutions are $x = 4, 2, 5$.
- 3. C The question is equivalently asking $19x \equiv 13 \mod 29$, which can be rewritten as $19x = 29a + 13$. Taking both sides modulo 19 to get $0 \equiv 10a + 13 \mod 19$, or $19b = 10a + 13$. Taking both sides modulo 10 to get $9b \equiv 3 \mod 10$. At this point, $b = 7$, substituting back to get $a = 12$ and $x = 19$.
- 4. D Subtracting 5 from both sides of the original equation, $6x \equiv 18 \mod 10$, but since $gcd(6, 10) = 2$, that yields $x \equiv 3 \mod 5$. $23 + 28 + 33 + 38 + 43 + 48 = 213$.
- 5. C Given that $3x + 5y \equiv 0 \mod 37$, we have $3x \equiv -5y \mod 37$, so $40x \equiv$ $-5y \mod 37$, or $y \equiv -8x \mod 37$. Then $ax + 7y \equiv ax - 56y \mod 37$. For that to always be divisible by 37, we have $a \equiv 19 \mod 37$.
- 6. D χ must divide into the pair-wise difference of the numbers given. 87937 59117 = 28820, and 131167 $-$ 87937 = 43230. Therefore, the largest value of x is $gcd(28820, 43230) = 14410$. The sum of the digits is 10.
- 7. B Getting common denominator on the left, $\frac{a+b}{ab} = \frac{1}{12}$ $\frac{1}{12}$. Cross multiply and rearrange to get $ab - 12a - 12b = 0$, adding 144 to both sides and factor to get $(a - 12)(b -$ 12) = 144. 144 = $2^4 \cdot 3^2$, so it has 15 factors. $a - 12$ can be equal to each of the 15 factors, with a corresponding value for $b - 12$.
- 8. B Taking the entire equation modulo 13 to get $5y \equiv 4 \mod 13$. By inspection, $y \equiv 6$. This yields two solutions, $(55, 6)$ and $(24, 19)$. $55 + 6 + 24 + 19 = 104$.
- 9. C Based on the information given, $x = 16A + 4B + C$ and $y = 36A + 6B + C$, so $32A + 8B + 2C = 36A + 6B + C$, or $4A - 2B - C = 0$. Since 4A and 2B are both even, *C* must also be even. If $C = 0$, then $B = 2$, $A = 1$, and $x = 24$. If $C = 2$, there are two possibilities as *B* can be either 1 or 3. *A* is equal to 1 or 2, respectively. So the two values for *x* are 22 and 46. Therefore, $z = 92$, and sum of the digits is 11.
- 10. D Note that the norm of a Gaussian integer is the square of the more familiar complex norm. The norm of a product is simply the product of the norms. So the norm is $5 \cdot 8 \cdot$ $50 \cdot 10 = 20000$
- 11. B A real number is a Gaussian prime if and only if it is a prime that is 3 modulo 4. Otherwise, it is a sum of squares, and can be expressed as a product of two conjugates. For example, $2 = (1 + i)(1 - i)$, $5 = (2 + i)(2 - i)$. (Similarly for purely imaginary numbers. A Gaussian integer with both real and imaginary parts is prime if its norm is a prime number (call it *p*). Then if it is expressed as a product of two Gaussian integers, their norms must be 1 and *p*. The norm of $3 + 5i$ is 34, so it can be expressed as the product of two Gaussian integers with norms 2 and 17. One such expression is $(1 + i)(4 + i)$.
- 12. D All but the sets of real numbers and the set of irrational numbers are countably infinite.

 $2 + 3i$, $2 + 5i$, and 3 are the Gaussian primes in the set.

- 13. C $720 = 2^4 \cdot 3^2 \cdot 5$, so *a* and *b* must only have 2, 3, and 5 in its prime factorization. Consider powers of 2 for a and b . One of them must have $2⁴$ in its prime factorization, or their lcm cannot have $2⁴$. The other can have any power of 2 from 0 to 4. So the number of ways for *a* and *b* to have powers of 2 is $2 \cdot 5 - 1 = 9$. The case where both have $2⁴$ is double counted, so it must be subtracted out. Similarly, there are $2 \cdot 3 1 = 5$ ways for powers of 3, and $2 \cdot 2 - 1 = 3$ ways for powers of 5. All 3 are independent of each other, making a total of 9 ∙ 5 ∙ 3 ordered pairs.
- 14. A Based on the information given,

 $b^2 + 3$ $\frac{1}{b^2 + 3b + 6} =$ $b + 4$ $b + 8$ Cross multiply to get $b^3 + 8b^2 + 3b + 24 = b^3 + 7b^2 + 18b + 24$, or $b^2 - 15b = 0$. Therefore, $149_{15} = 225 + 60 + 9 = 294$ and $338_{15} = 675 + 45 + 8 = 728$. $\frac{294}{728}$ $\frac{254}{728}$ = 21 $\frac{21}{52} = \left(\frac{16}{37}\right)_{15}.$

- 15. A It's fastest to consider this problem in chunks of 30. For every 30 consecutive integers, there are 15 multiples of 2, 10 multiples of 3, 5 multiples of 6, 3 multiples of 10, 2 multiples of 15, and 1 multiple of 30. So the number of integers satisfying the conditions given is $15 + 10 - 5 - (3 + 2 - 1) = 16$. From 7 to 2016, there are 67 ⋅ $16 = 1072$ such numbers, then tack on 2, 3, 4, and 6 for 1076 such numbers.
- 16. D Euler's totient theorem does not apply directly, since $gcd(8, 800) \neq 1$. So we must consider 8^{321} modulo 32 and 25, since $800 = 2^5 \cdot 5^2$. Clearly, $8^{321} \equiv 0 \mod 32$. $\phi(25) = 20$, so $8^{20} \equiv 1 \mod 25$, or $8^{321} \equiv (8^{20})^{16} \cdot 8 \equiv 8 \mod 25$. Now we are seeking a number less than 800 that is 0 mod 32 and 8 mod 25, and that number is 608.

17. B Let $x = p^a q^b$, where p, q are distinct primes. Then $N = (a + 1)(b + 1)$. $x^2 = p^{2a}q^{2b}$, so $3N = (2a + 1)(2b + 1)$. Therefore, $3ab + 3a + 3b + 3 = 4ab + 2a + 2b + 1$, Or $ab - a - b = 2$. Adding 1 to both sides, $(a - 1)(b - 1) = 3$. Since both *a* and *b* are positive integers (or *x* wouldn't have two prime factors), one of them is 2, the other is 4, and $N = 15$. $x^7 = p^{14}q^{28}$, which has $(14 + 1)(28 + 1) = 29N$ factors.

- 18. C For $x^k \equiv k \mod 363$ to be true in general, $x^2 \equiv x \mod 363$. So $x^2 x = x(x 1)$ must be divisible by 363. Since $363 = 3 \cdot 11^2$, either one of x and $x - 1$ is divisible by 363, or one of them is divisible by 121 and the other is divisible by 3. This leaves 4 possibilities modulo 363, which are $x \equiv 0, 1, 121, 243 \mod 363$. There are 3 of each of the 4 possibilities, since $243 + 363 \cdot 2 < 1000$. Their sum is $3(0 + 1 + 121 + 12)$ $243) + 4(363 + 2 \cdot 363) = 5451$. $5^2 + 4^2 + 5^2 + 1^2 = 67$.
- 19. B By Wilson's theorem, $(p 1)! \equiv -1 \mod p$. So $r(f(n), n)$ is $n 1$ if n is prime. If *n* is not prime, $r(f(n), n) = 0$, since *n* is part of $(n + 1)!$. So $\sum_{n=1}^{25} r(f(n), n) = 91$. You may remember that sum of primes under 25 is 100, and there are 9 of them. Alternatively, just add them up. 91 leaves a remainder of 1 when divided by 5.

20. B
$$
\frac{9}{34} = \frac{1}{34} = \frac{1}{3 + \frac{7}{9}} = \frac{1}{3 + \frac{1}{9}} = \frac{1}{3 + \frac{1}{1 + \frac{2}{7}}} = \frac{1}{3 + \frac{1}{1 + \frac{1}{7}}} = \frac{1}{3 + \frac{1}{1 + \frac{1}{1 + \frac{1}{2}}}}
$$

So $\frac{9}{34} = [0; 3, 1, 3, 2]$. $3^2 + 1^2 + 3^2 + 2^2 = 23$.

21. D Let $x = [2, \overline{1, 2}]$. Then

$$
x = 2 + \cfrac{1}{1 + \cfrac{1}{2 + \cfrac{1}{1 + \cfrac{1}{2 + \cdots}}}}
$$

Substituting x for the bolded part, we have

$$
x = 2 + \frac{1}{1 + \frac{1}{x}} = 2 + \frac{x}{x + 1} = \frac{3x + 2}{x + 1}
$$

So $x^2 + x = 3x + 2$, or $x^2 - 2x = 2$. Completing the square to get $(x - 1)^2 = 3$, and since $2 < x < 3$, $x = 1 + \sqrt{3}$.

- 22. E Convergents are the truncated continued fractions. Note that $3 = 3$, $\frac{22}{7}$ $\frac{22}{7}$ = 3 + $\frac{1}{7}$ $\frac{1}{7}$, and 355 $\frac{355}{113} = 3 + \frac{1}{7+1}$ $7 + \frac{1}{2}$ $15+\frac{1}{1}$. So the third convergent is $3 + \frac{1}{2}$ $7+\frac{1}{11}$ 15 $=\frac{333}{105}$ $\frac{333}{106}$.
- 23. D When the convergents are written as $\frac{x}{y}$, the solutions to $x^2 2y^2 = \pm 1$, alternating between 1 and -1 , starting with $1^2 - 2 \cdot 1^2 = -1$ The first six convergents of $\sqrt{2}$ are 1 $\frac{1}{1}, \frac{3}{2}$ $\frac{3}{2}$, $\frac{7}{5}$ $\frac{7}{5}$, $\frac{17}{12}$ $\frac{17}{12}, \frac{41}{29}$ $\frac{41}{29}$, and $\frac{99}{70}$. (99, 70) is the third smallest solution to $x^2 - 2y^2 = 1$.
- 24. C Each element r of the list is in the form of $\frac{p}{q}$, where p is a factor of 5400 = $2^3 3^3 5^2$, and *q* is a factor of 2880 = 2⁶3²5. So $r = \pm 2^a 3^b 5^c$, where $-6 \le a \le 3, -2 \le b \le 3$ 3, and $-1 \le c \le 2$, so the total number of possibilities is $2 \cdot 10 \cdot 6 \cdot 4$, and with 6 roots, the probability of picking a root is 1/80.
- 25. B Dropping height from *A* to *CD*, and call the foot *F*, possibly coinciding with *D*. Since $m\angle C < m\angle D$, $DF < CE$. Call, $DF = x$, $AD = a$, $BC = b$, and height *h*, not necessarily rational. Then $CE = 6 - x$, and x can only be 0, 1, or 2. Applying Pythagorean Theorem to $\triangle AFD$ and $\triangle BEC$, $x^2 + h^2 = a^2$, $(6 - x)^2 + h^2 = b^2$. Subtracting the first from the second to arrive at $36 - 12x = (b - a)(b + a)$. Now consider the cases:
	- 1. $x = 0$, then $(b a)(b + a) = 36$, for both *a* and *b* to be positive integers, $b a$ $a = 2$ and $b + a = 18$, or $b = 10$, $a = 8$.
	- 2. $x = 1$, then $(b a)(b + a) = 24$, there are 2 subcases:
		- a. $b a = 2$, $b + a = 12$, then $b = 7$, $a = 5$
		- b. $b a = 4$, $b + a = 6$, then $b = 5$, $a = 1$, but this makes the trapezoid degenerate, and thus is not a solution.
	- 3. $x = 2$, then $(b a)(b + a) = 12$, then $b a = 2$, $b + a = 6$, or $b = 4$, $a = 2$. This is also degenerate.

This leaves a total of 2 possible trapezoids.

- 26. B Let $x^3 = 31,217,193,218,303$. Clearly, the unit digit of *x* must be 7. Eliminate E. Consider x^3 modulo 8. It is 7 mod 8, so x must be 7 mod 8. Eliminate A. x^3 is 8 mod 9, so *x* must be 2 mod 3. Eliminate C. Finally, $32087^3 > 32000^3 = 1024 \cdot 32 \cdot 10^9 > 32 \cdot 10^{12}$. Eliminate D.
- 27. C 30 = $2 \cdot 3 \cdot 5$, and $54 = 2 \cdot 3^3$. For 30|54*N*, *N* must have a factor of 5. For 54|30*N*, *N* must have factors of 3^2 . Therefore, *N* must be a multiple of 45. Further, *N* divides $54 \cdot 30 = 1620$, so *N* must also be a factor of 1620. $1620 = 2^2 \cdot 3^4 \cdot 5$, reserving $3^2 \cdot$ 5 to ensure a multiple of 45 leaves $2^2 \cdot 3^2$, so there are $(2 + 1)(2 + 1) = 9$ possibilities for *N*.
- 28. A When substituting $a \cdot b^n + c \cdot d^n$ into the recurrence, the powers of *b* and *d* stay separate, and a and c factor out, so simply substituting in b^n is sufficient for solving for *b* and *d*. $G_n = 3G_{n-1} + 4G_{n-2}$ becomes $b^n = 3b^{n-1} + 4b^{n-2}$, or $b^{n-2}(b^2 - 3b - 4) = 0$. This yields two real solutions, which are the values of *b* and *d*, and they add to 3. Taking the recurrence back one step (using $n = 2$), we have $13 = 3 \cdot 7 + 4G_0$, or $G_0 =$ -2 . Substituting in 0 for *n* in the explicit formula to get $a + c = -2$. So $a + b + c + d = 1$.
- 29. D $0.1_{10} = (0.0\overline{0011})_2$, so $m = 1, n = 4$, and $\sum_{k=1}^{n} A_{m+k} 2^k = 8 + 16 = 24$.
- 30. A $A = 4, B = 4, C = 2, D = 0$, the sum is 10.