UTAH 2015

Speed Math Test #642

Name	: _		
ID Nu	mber: _		
Schoo	l: _		
Divisi	on (circle	e one):	
Mu	Alpha	Theta	Sponsor

1.	Bill is two years older than Mary, and in	12.
	two years he will be twice Mary's age	
	three years ago. How old is Bill now?	13.
2.	Simplify: $\log_8 \left(\sqrt{2^{0.75}} \cdot (2^6)^{\frac{1}{3}} \right)$	
3.	A mixture consists of 40% water, 35%	
	bromine, and 25% mercury. If adding	
	15 milliliters of bromine would make	
	the mixture have equal parts water and	14.
	bromine, how many milliliters of	
	mercury are in the solution?	15.
4.	The smaller two numbers of a	101
	Pythagorean triple are 133 and 156.	
	Find the largest number in this triple.	
5.	Evaluate the expression when $x = 2$:	
	$-3x^5 + 3x^4 - 9x^3 + x^2 + 2x + 5$	16
6.	In how many distinct ways can three	10.
	indistinct nickels and three indistinct	17.
	quarters be arranged in a line so that	
	quarters are on both ends?	
7.	In a long row of lockers numbered with	18.
	consecutive integers beginning with 1,	19.
	every 6 th locker (starting with locker	
	number 1) has gum on it, every 7 th	
	locker (starting with locker number 1)	
	has a sticker on it, and every 11 th locker	20.
	(starting with locker number 1) has a	
	poster on it. What number is the first	
	locker (after locker number 1) to have	
	all three items on it?	21.
8.	Given $f(x) = \frac{x+2}{x-1}$, where $x \neq 1$, find	22.
	a rational expression for $f^{-1}(x)$.	
9.	Six integers from a list of nine total	
	integers are 7, 8, 3, 5, 9, and 5. What is	23
	the largest possible value of the median	23.
	of the nine integers in this list?	24.
10.	What value of <i>x</i> solves the equation	
	2(2x-4)-(3x-6)=8+3(4-7x)?	
11	How mony "o" a no in this contains 9	25.

What is the *y*-intercept of the line through the points (-3,6) and (4,8)?

- There exist two 4-digit positive integers whose digits are 3 or less such that for each integer, the first digit is the number of zeros in the integer, the second digit is the number of ones in the integer, etc. Find the sum of these two integers.
- What is the positive value of x that satisfies $x^2 + 4x + 55 = 100$?
- If a car goes one mile at *x* miles per hour
 and then one mile at *y* miles per hour,
 find a simplified expression representing
 the average speed of the car, in miles per hour, over those two miles.
- Compute $(1+i)^{12}$.
- The supplement of an angle is five times the angle. What is the degree measure of twice the complement of the angle? Evaluate: 1+1·1+1-1÷1-1·1·1+1 After spending 1/4 of my money, then 1/5 of what I have remaining, I now have \$66 remaining. How many dollars
 - have \$66 remaining. How many dollars did I start with?
- Mr. and Mrs. Smith have three children.What is the probability that they haveexactly two boys? At any time, a boy orgirl is equally as likely to be born.
- How many diagonals does a regular icosagon have?
 - Movie tickets at a theater cost \$4/child and \$6/adult. If 25 tickets cost \$130, how many of these tickets were child tickets?
 - Solve for *p*: |2p+4| = 24
 - Find the area, in square units, enclosed by a circle circumscribing a regular hexagon whose side length is 8 units. The base of an equilateral triangle lies on the *x*-axis. Find the sum of the slopes of the three sides of the triangle.