Theta Ciphering

0. $280x^3$
1. $-\frac{23}{7}$
2. 34
3. $\frac{3}{2}$
4. 8
5. 2\sqrt{13}
6. 337
7. 1332004 or 133200
8. 65
9. 15 ft
10. 2 or (2, 0)
11. $162\sqrt{3} - 81\pi$
12. 18
13. $-\frac{4}{3}$
14. 151,200

Solutions:

$$0. \binom{7}{3} (2x)^3 (-1)^4 = 280x^3$$
$$1. \binom{2}{3}^{2(2x+7)} = \binom{2}{3}^{-3(x+3)} \Longrightarrow 4x + 14 = -3x - 9 \Longrightarrow 7x = -23 \Longrightarrow x = -\frac{23}{7}$$

2. $7 = x^2 - y^2 = (x - y)(x + y) = (x - y)(-1) \Rightarrow x - y = -7$. The solution to the system of equations x + y = -1, x - y = -7 is (-4, 3), so $5x + 6y - 3xy = 5 \cdot -4 + 6 \cdot 3 - 3 \cdot -3 \cdot 4 = -20 + 18 + 36 = 34$.

3. Let
$$u = \sqrt{2x-1}$$
. Then $\sqrt{\frac{3(u^2+1)}{2}} + u = \frac{5}{u} \Rightarrow \sqrt{\frac{3(u^2+1)}{2}} = \frac{5-u^2}{u} \Rightarrow \frac{3u^2+3}{2} = \frac{u^4-10u^2+25}{u^2}$
 $\Rightarrow 3u^4 + 3u^2 = 2u^4 - 20u^2 + 50 \Rightarrow 0 = u^4 + 23u^2 - 50 = (u^2+25)(u^2-2)$, and since $u \ge 0$, $u = \sqrt{2}$.
Therefore, $2x-1=2 \Rightarrow x = \frac{3}{2}$.

4. Let $a = \log 4$ and $b = \log 25$. Then we are looking for $3ab^2 + b^3 + a^3 + 3a^2b = (a+b)^3$, and since $a+b = \log 4 + \log 25 = \log 100 = 2$, $(a+b)^3 = 8$.

5. $y = \frac{1}{2}x^2 - 6x + 15 = \frac{1}{2}(x-6)^2 - 3$, so the vertex is (6, -3). $x^2 - 4x + y^2 - 6y = 5 \Rightarrow (x-2)^2 + (y-3)^2 = 18$, so the center is (2,3). The distance between these points is $\sqrt{(2-6)^2 + (-3-3)^2} = \sqrt{16+36} = \sqrt{52} = 2\sqrt{13}$.

- 6. By the given information, $\sqrt{xy} = 12 \Rightarrow xy = 144$ and $\frac{x+y}{2} = 12.5 \Rightarrow x+y = 25$. Since $(x+y)^2 = x^2 + y^2 + 2xy$, $625 = 25^2 = x^2 + y^2 + 2 \cdot 144 = x^2 + y^2 + 288 \Rightarrow x^2 + y^2 = 337$.
- 7. Since $2016 = 1 \cdot 4^5 + 3 \cdot 4^4 + 3 \cdot 4^3 + 2 \cdot 4^2 + 0 \cdot 4^1 + 0 \cdot 4^0$, $2016 = 133200_4$.

8. Todd travels 30 miles/hour for 0.8 hours, or 24 miles. Calvin travels 24 miles per hour for 5/12 of an hour, or 10 miles. Since they traveled in perpendicular directions, they are 26 miles apart. Since they are traveling toward each other, each at 12 miles/hour, they are closing the gap at 24 miles/hour. Therefore, it will take 26/24 = 13/12 hours, or 65 minutes.

9. No matter how far apart the poles are, the wires will cross each other at a height of $\frac{a \cdot b}{a+b}$ units above ground, where *a* and *b* are the heights of the two poles in the same units. Therefore, the intersection of the wires occurs at a height of $\frac{24 \cdot 40}{24+40} = 15$ feet.

10. The line 5x-2y=6 has slope $\frac{5}{2}$, so a perpendicular line has slope $-\frac{2}{5}$. The midpoint of the line segment whose endpoints are (-5, -3) and (-1, 7) is $\left(\frac{-5+(-1)}{2}, \frac{-3+7}{2}\right) = (-3, 2)$, so the line we are looking for has equation $y-2=-\frac{2}{5}(x+3)$. The *x*-intercept has *y*-coordinate 0, so $-2=-\frac{2}{5}(x+3)$ $\Rightarrow 5=x+3 \Rightarrow x=2$.

11. The radius of the circle is an apothem of the hexagon, so a side length of the hexagon is $\frac{9}{\sqrt{3}} \cdot 2 = 6\sqrt{3}$. Therefore, the sought area is $\frac{1}{2} \cdot 9 \cdot (6 \cdot 6\sqrt{3}) - \pi \cdot 9^2 = 162\sqrt{3} - 81\pi$.

12. Let *R* and *r* be the lengths of the circumscribed and inscribed circles, respectively. Then R = 2r + 8, and therefore, $12 = \sqrt{(2r+8)((2r+8)-2r)} = 4\sqrt{r+4} \Rightarrow r = 5 \Rightarrow R = 18$.

13.
$$6+0-4-0-0-4x = 0-6x-2-x-0-0 \Rightarrow 2-4x = -7x-2 \Rightarrow 4 = -3x \Rightarrow x = -\frac{4}{3}$$

14. There are 2 Os, 2 Ks, and 3 Es, so the number of distinct permutations is $\frac{10!}{2!2!3!} = 151,200$.